

Environmental Consulting & Technology, Inc.

27 August 2008

Waste & Hazardous Materials Division

SEP - 2 2008

Mr. James Lucas Michigan Department of Environmental Quality Waste and Hazardous Materials Division, Storage Tank Unit P.O. Box 30241 Lansing, Michigan 48909-7411

Subject:

Underground Storage Tank System Site Assessment Report CMI-Tech Center, Inc., 1600 West 8-Mile Road, Ferndale, Michigan Facility Identification No: 00006304 (ECT Project No. 08-0514)

Dear Mr. Lucas:

On behalf of Hayes Lemmerz International, Inc. (Hayes Lemmerz), Environmental Consulting & Technology, Inc. (ECT) has prepared this Underground Storage Tank (UST) System Site Assessment Report to address the removal and decommissioning of two regulated USTs located at the above-referenced facility. *Further, based upon field observations made at the time of the UST removals and the analytical data/findings summarized herein, this correspondence also serves as a formal acknowledgement (pursuant to reporting guidelines promulgated under Part 211 of Public Act 451 of 1994, as amended) that Hayes Lemmerz and ECT are hereby rescinding the "suspected release" filed with the Michigan Department of Environmental Quality – Waste and Hazardous Materials Division on 12 August 2008.*

The subject UST system consisted of two 15,000-gallon, double walled tanks used for the storage of diesel fuel and unleaded gasoline. The USTs were positioned within a common excavation along the northwest corner of Building C, approximately 80 feet north of Building H, and approximately 20-25 feet east of Building B. As the UST systems were installed within a shallow water table area of the facility, the USTs were physically secured with steel anchored straps which were affixed to what appeared to be concrete dead-men. (Note: A concrete pad was not observed beneath the USTs during removal.) The location of the former UST systems is depicted on Figures 1 (Site Layout Map) and 2 (Excavation Detail).

Based upon initial inspection observations made by ECT personnel on 25 March 2008, a structurally sound, sub-grade spill containment unit was affixed to each UST system. Observations noted within each spill containment unit showed the UST systems were both engineered/designed with suction pumps which reportedly dispensed fuels eastward towards Building C through a network of double-walled underground fiberglass piping. No visible evidence of fuel spillage, leakage, petroleum residue, or otherwise was observed within the spill containment units that day or prior to undertaking the UST system removal/decommissioning activities summarized herein.

3125 Sovereign Drive, Suite 9A Lansing, Michigan 48911

> FAX (517) 272-9703

> (517) 272-9200

MDEQ-WHMD 20 August 2008 Page 2 of 5

On 14 July 2008, ECT filed a "Notice of Intent to Remove" for the subject USTs with the Michigan Department of Environmental Quality - Waste and Hazardous Materials Division (MDEQ-WHMD). Following receipt of verbal approval to exhume the USTs from Doug Pentzien of the MDEQ-WHMD (SE Michigan District office), ECT scheduled the removal activities with Hayes Lemmerz, the City of Ferndale Fire Department, and Tri-County Services and Rentals, Inc. (a qualified UST removal contractor). The UST systems, at the time of removal, were registered as "temporarily closed" with the MDEQ-WHMD. (Note: Following the removal of the USTs, an amended UST registration will be filed with the MDEQ-WHMD on or before 31 August 2008 to document the removals.)

On 28 July 2008, Tri-County Services and Rentals, Inc. (TCS) and ECT mobilized to the facility to begin removal of the USTs. The UST system's ancillary piping was pressurized and evacuated of any residual fuels. Approximately 11 to 12 gallons of fuel were purged from the dispenser piping. Prior to unearthing the USTs, the monitoring and pumping apparatus were physically removed from inside the spill containment units to provide access to the inside of each UST through the existing ports constructed at the topsides of each tank. The residual fuels contained within the USTs were then removed and petroleum oil dry compound was applied to solidify all remaining liquids/solids contained within tanks. Approximately 70 gallons of mixed fuels (gasoline and diesel fuel) from the USTs were placed in two 55-gallon steel drums and transported off-site by TCS for reclamation by Usher Oil Company.

The soil overburden and adjacent soils alongside the USTs were then exhumed and the tanks were removed from the tank pit, staged above-grade, and examined for apparent evidence of oxidation, pitting, or breaches of structural integrity. (Note: No petroleum vapors, soil discoloration, petroleum staining, etc. was observed to exist at the topside of the subject USTs during the removal efforts.) The USTs appeared to be in very good condition with no evidence of oxidation, pitting, perforations, cracks, etc. The USTs were confirmed to be steel double-walled tanks (i.e., stiP₃) with cathodic protection. The actual size of each UST was 23.5 ft. long by 10.5 ft. in diameter with a reported volumetric operating design capacity of 15,000 gallons. Following removal, the USTs were staged onsite for shipment to a local recycling facility. The resulting UST excavation was approximately 43 ft. long by 43 ft. wide by 13.5 ft. deep. The UST removal activities were observed by Mr. Roger Schmidt, the City of Ferndale's Fire Chief.

During the UST removal activities, the excavated soils were field-screened using a calibrated Organic Vapor Monitor (OVM). The OVM was used to screen for petroleum volatile organic compounds (VOCs) and has a detection limit of 1 part per million (ppm). No OVM readings above the detection limit were observed in the soils screened during the removal of the USTs. Further, no apparent petroleum odors or soil discoloration/staining were noted in the soils surrounding or at the base of the UST cavity.

The soils encountered during removal of the USTs consisted of primarily a mixture of permeable sand and gravel. Following the removal of the northernmost (diesel fuel containing) UST, two discrete soil samples (D-1 and D-2) were collected for analyses (basal soils underlying each end of the UST) from depths of approximately 13.5 ft. below grade level (bgl). The soils sampled were moist to wet in physical appearance. Upon removal of the southernmost gasoline UST, discrete soil samples were collected from each end of the subject tank at a depth of 13.5 ft. bgl; however, the samples appeared to be saturated with groundwater. Following a short period of time, groundwater appeared to be flowing

MDEQ-WHMD 20 August 2008 Page 3 of 5

into the base of the gasoline cavity; accordingly, and in conformance with Part 211 UST statutes, ECT personnel collected one representative groundwater sample (GW-1) from within the open cavity beneath the former gasoline UST.

The discrete soil samples collected from within the UST excavation were preserved in the field with methanol according to United States Environmental Protection Agency (US EPA) Method 5035. Samples were containerized in pre-labeled laboratory jars/vials and placed on ice in a cooler for continued preservation and shipment. Similarly, the groundwater sample was placed in a pre-labeled laboratory prepared jar/vial and placed on ice in a cooler for continued preservation and shipment.

On 29 July 2008, TCS and ECT mobilized to the facility to complete backfilling operations, off-site shipment of the USTs, and the removal of the UST system's ancillary product piping and vent lines. Groundwater was observed present across the exposed base of the excavation at a depth of approximately 10 ft. bgl; at this time a second groundwater sample (GW-2) was collected from the same location as GW-1. The amount of suspended sediments within the groundwater at the base of excavation had settled out over night and provided an opportunity to collect a more representative water sample. No observable petroleum sheen was present on the groundwater's surface. The groundwater sample was placed in a pre-labeled laboratory prepared jar/vial and placed on ice in a cooler for continued preservation and shipment.

To assess the soils adjacent to the product dispensing lines, discrete soil samples (P-1 and P-2) were obtained from beneath the piping along the eastern edge of the common UST excavation and in the area where the piping entered the building; see Figure 2. Following collection, the discrete soil samples were prepared in the field for laboratory analysis as described above, and subsequently placed on ice in a cooler for continued preservation and shipment. The product distribution lines were constructed of steel with fiberglass secondary containment. The product lines appeared to be in very good condition; however, portions of the fiberglass secondary containment for the gasoline lines (near P-2 and the northwest corner of Building C) appeared to have been re-sleeved/repaired at some time in the past.

To abandon/seal the product distribution piping where removal became hindered by the existence of a sub-grade utility tunnel/grate (see Figure 2), TCS cut the piping near the point where the lines exit the tunnel from Building C. While cutting the gasoline dispenser line at the sub-grade utility tunnel/grate, a small volume of gasoline (less than one gallon) discharged to the subsurface soils adjacent to the terminus of the dispenser lines (proximal to P-2). TCS personnel expeditiously responded with petroleum sorbent pads and minimized the adverse affects of the unanticipated discharge. As it appeared that there was a small volume of fuel within the gasoline fuel line adjacent to the sub-grade tunnel/grate, TCS personnel entered the tunnel area and cut the gasoline line in a second location which appeared to be at a lower elevation. When the pipe was cut, personnel observed that residual fuel was contained within the interstice of the primary fuel and the secondary containment lines. Approximately one gallon of gasoline was recovered from the interstice between the primary fuel and secondary containment lines at the cut made within the tunnel. No residual fuel was recovered from the diesel fuel secondary containment line from within the tunnel. All fuel dispensing lines were appropriately drained and sealed where removal was not a cost-effective option. Based upon volumetric calculations, it is anticipated that between 0.25 to 0.5 gallons of gasoline was inadvertently discharged to the subsurface soils during the "de minimis spill" release incident disclosed above.

MDEQ-WHMD 20 August 2008 Page 4 of 5

Pursuant to the "de minimis spill"/inadvertent release, TCS (at ECT's direction) undertook immediate soil abatement activities following the mitigation of the apparent discharge. Response actions included the removal of soils from beneath the "de minimis spill" area; approximately ½ cubic yard of soil was removed for appropriate disposal at Veolia ES Arbor Hills Landfill, Inc.

The UST system vent lines were also removed from the ground and alongside Building C. Following removal of the ancillary piping, the excavated areas were backfilled with clean fill and finished to grade with topsoil or the original surface material. Photographs of the UST system removal activities are presented in Attachment A.

Storm sewer catch basins and environmental monitoring wells were noted within the UST area, suggesting an underground drainage system exists south, west, and north of the UST area, while the presence of monitoring wells within the former UST area suggests the facility has had historic releases from an area proximal to the UST removal excavation. (Note: Numerous UST vent pipes were observed at the facility south of the UST removal excavation adjacent to Building H. Through inquiry ECT has learned that all these vent lines are associated with the UST systems formerly owned/operated and removed by Ethyl Corporation.)

Based on the subsurface conditions encountered at the facility concurrent with the UST removal activities, one discrete soil sample (D-2) and one groundwater sample (GW-2) collected during different hydrologic conditions within the UST excavation were selected for analysis. Further, two discrete soil samples were collected from beneath the dispensing lines connected to the subject UST systems. The samples were submitted to RTI Laboratories, Inc. (RTI) under chain-of-custody (COC) documentation for benzene, toluene, ethylbenzene, total xylenes, and polynuclear aromatic hydrocarbons analyses according to US EPA Methods 8260 and 8270 or 8310, respectively. Analytical laboratory reports and the COC document from these activities are presented in Attachment B.

Analytical results from the July 2008 soil/groundwater quality assessment samples, collected concurrent with the UST removal activities, indicate that petroleum hydrocarbons are present within the soil and shallow groundwater beneath the UST systems at concentrations exceeding reported laboratory detection limits; however, the reported concentrations are at levels below the Part 213 Tier 1 Residential and Commercial I Risk-Based Screening Levels.

According to previous reports, a gasoline release was reported from one of the USTs in 1996 during a routine UST inspection. Reportedly, the tank system was repaired and approximately 90 cubic yards of gasoline impacted soils were removed from around the USTs and disposed off-site. Groundwater sampling performed at that time indicated gasoline constituents were present at concentrations below the Part 201 Generic Residential Criteria following the soil abatement efforts. A phase I baseline environmental assessment indicates that the 1996 release incident was closed by the MDEQ Storage Tank Division during February 1998. Further, several USTs were removed from the facility (approximately 73) in 1985 by the former owner, Ethyl Corporation. Field notes from the City of Ferndale Fire Department indicate that the several of the USTs were located north of Building D, north of Building H (between Buildings B and C), northwest of Building B, east of Building E, east of Building F, and southwest of Building R.

MDEQ-WHMD 20 August 2008 Page 5 of 5

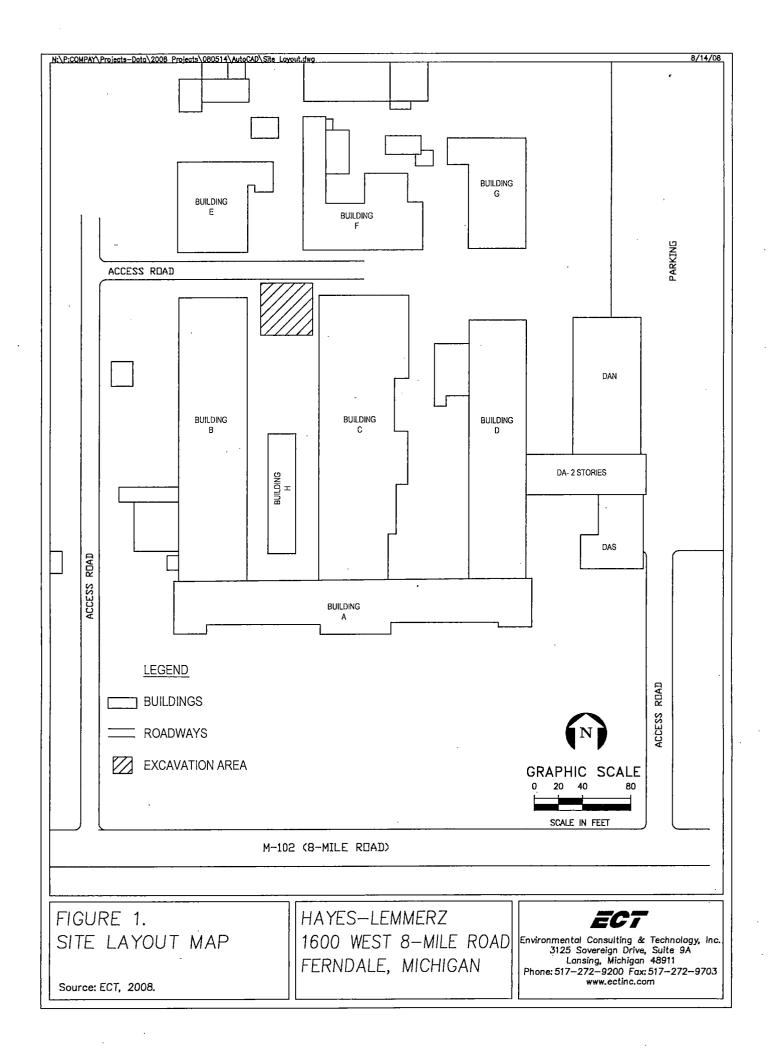
Based upon the analytical data contained herein as Attachment B, ECT filed a "suspected release" for the facility on 12 August 2008. As previously mentioned, field observations indicate that the USTs and associated ancillary piping appeared structurally sound and uncompromised at the time of removal; further, no apparent pitting or oxidation was observed on the USTs. Given the field observations made by ECT at the time of the UST system removals (i.e., the absence of detectable OVM deflections during soil screening efforts, the absence of petroleum vapors emitted during the UST removal activities, the absence of discolored/hydrocarbon stained soils and/or a petroleum sheen afloat the groundwater within the open UST cavity, and the existence of historical release closure data relevant to the subject UST systems and study area), ECT is of the opinion that the residual petroleum hydrocarbons observed within the soil and groundwater samples collected during July 2008 are likely attributable to documented releases occurring at the facility during the 1996 incident and/or prior to said time. Accordingly, we hereby rescind the reporting of the August 2008 "suspected release" and conclude no additional response actions are warranted to further evaluate our recent findings or the information disclosed herein.

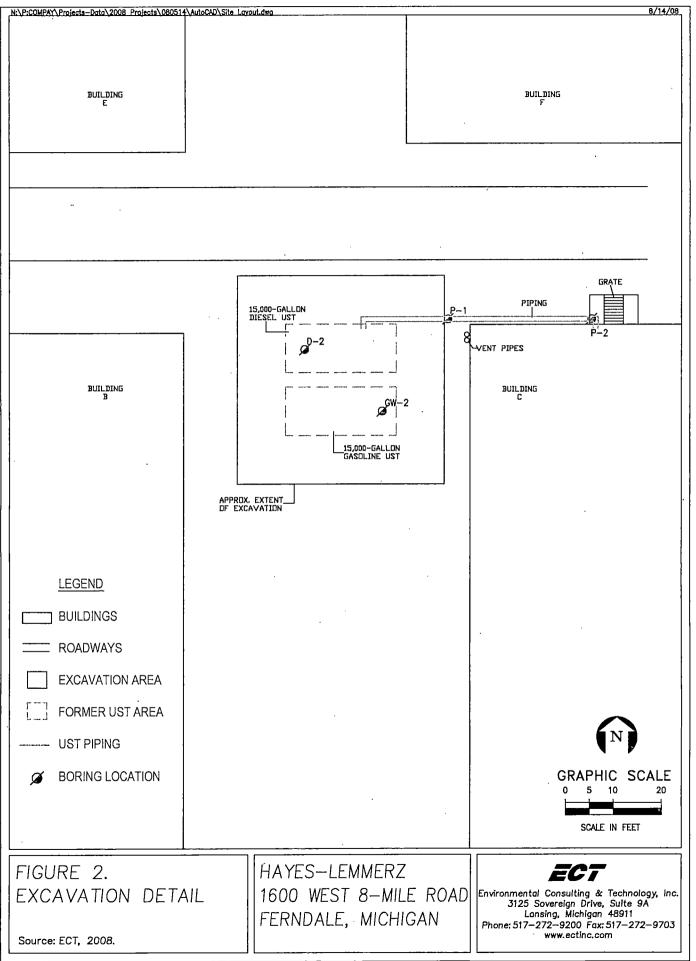
Should you have any questions or require additional information, please contact me at (517) 272-9200.

Sincerely,

Environmental Consulting & Technology, Inc.

Timothy F. Hebert, CPG/RG, CUSTP #0023 Manager, Remediation Services


Figure 1 – Site Layout Map Figure 2 – Excavation Detail


Attachment A – Site Photographs Attachment B – Soil & Groundwater Quality Analytical Results

N: P-project data/2008 projects/080514/Site Assmt Rpt. doc

FIGURES

ł

. .

ATTACHMENTS

· · ·

ATTACHMENT A

Site Photographs

PLATE 1

Photograph No. 1 Diesel UST removed from ground at CMI Tech Center, Inc. facility (28 July 2008)

Photograph No. 2 Excavation floor beneath diesel UST at CMI Tech Center, Inc. facility (28 July 2008)

ECT Environmental Consulting & Technology, Inc.

PLATE 2

Photograph No. 3 Gasoline UST removed from ground at CMI Tech Center, Inc. facility (28 July 2008)

Photograph No. 4 Excavation floor beneath gasoline UST at CMI Tech Center, Inc. facility (28 July 2008)

ECT Environmental Consulting & Technology, Inc.

PLATE 3

Photograph No. 5 Groundwater in excavation beneath former gasoline UST at CMI Tech Center, Inc. facility (28 July 2008)



Photograph No. 6 Product piping line P-1 sample location at CMI Tech Center, Inc. facility (29 July 2008)

ECT Environmental Consulting & Technology, Inc.

Photograph No. 7 Product piping line P-2 sample location at CMI Tech Center, Inc. facility (29 July 2008)

Photograph No. 8 Product piping line excavation at CMI Tech Center, Inc. facility (29 July 2008)

ECT Environmental Consulting & Technology, Inc.

ATTACHMENT B

Soil & Groundwater Quality Analytical Results

GID				ia, Mich	Glendale St. igan 48150 4.422.8000	A	nalytical Repo
RTI LABO	ratories, in	IC.		FAX: 73	4.422.5342 4.422.5342 <u>9.rtilab.com</u>		WO#: 0807A Date Reported: 8/11/20
CLIENT:	Environmental Consu	ilting & Techi	nology, Inc		Collection Date	e: 7/28/2	2008 1:15:00 PM
Project:	Hayes-Lemmert - 08-	_					
-	•	0511				0.017	
Lab ID:	0807A01-001				. Matrix	: SOIL	
Client Sample II	D -2 13.5'						
analyses		Result	RL	Qual	Units	DF	Date Analyzed
	AROMATIC HYDROC				SW82700	C	Analyst: JW
2-Methylnaphthal	ene	ND	190)	µg/Kg-dry	1	8/8/2008 9:26:00 PM
Acenaphthene		ND	190		µg/Kg-dry	1	8/8/2008 9:26:00 PM
Acenaphthylene		ND	190		µg/Kg-dry	1	8/8/2008 9:26:00 PM
Anthracene		ND	190		µg/Kg-dry	1	8/8/2008 9:26:00 PM
Benz(a)anthracer	ie	140	190		µg/Kg-dry	1	8/8/2008 9:26:00 PM
Benzo(a)pyrene		130	190	i J	µg/Kg-dry	1	8/8/2008 9:26:00 PM
Benzo(b)fluoranth	nene	200	190)	µg/Kg-dry	1	8/8/2008 9:26:00 PM
Benzo(g,h,i)peryle	ene	90	190	I J	µg/Kg-dry	1	8/8/2008 9:26:00 PM
Benzo(k)fluoranth		81	190) J	µg/Kg-dry	1	8/8/2008 9:26:00 PM
Chrysene		150	190	J	µg/Kg-dry	1	8/8/2008 9:26:00 PM
Dibenz(a,h)anthra	acene	ND	190)	µg/Kg-dry	1	8/8/2008 9:26:00 PM
Fluoranthene		290	190	1	µg/Kg-dry	1	8/8/2008 9:26:00 PM
Fluorene	· .	ND	· 190	1	µg/Kg-dry	1	8/8/2008 9:26:00 PM
Indeno(1,2,3-cd)p	yrene	78	190	I J	µg/Kg-dry	1	8/8/2008 9:26:00 PM
Naphthalene		ND	190)	µg/Kg-dry	1	8/8/2008 9:26:00 PM
Phenanthrene		88	190	i J	µg/Kg-dry	1	8/8/2008 9:26:00 PM
Pyrene		250	190)	µg/Kg-dry	1	8/8/2008 9:26:00 PM
Surr: 2,4,6-Trit	promophenol	75.9	25-93.9)	%REC	1	8/8/2008 9:26:00 PM
Surr: 2-Fluorob	biphenyl	79.0	26-105	i	%REC	1	8/8/2008 9:26:00 PM
Surr: 2-Fluorop	bhenol	63.7	25-120)	%REC	1	8/8/2008 9:26:00 PM
Surr: Nitrobenz	zene-d5	66.8	30.1-104		%REC	1	8/8/2008 9:26:00 PM
Surr: Phenol-d		63.7 82.2	25-118 27.1-115		%REC %REC	1 1	8/8/2008 9:26:00 PM 8/8/2008 9:26:00 PM
Surr: Terpheny			27.1-110	,			
	ANIC COMPOUNDS - I ANIC COMPOUNDS	BTEX			SW82608	3	Analyst: MT;
Benzene		ND	64		µg/Kg-dry	53.2	8/5/2008 3:43:00 PM
Ethylbenzene		ND	64		µg/Kg-dry	53.2	8/5/2008 3:43:00 PM
Toluene		ND	64		µg/Kg-dry	53.2	8/5/2008 3:43:00 PM
Xylenes, Total		ND	190)	µg/Kg-dry	53.2	8/5/2008 3:43:00 PM
Surr: 4-Bromof	luorobenzene	98.9	90-115	;	%REC	53.2	8/5/2008 3:43:00 PM
Surr: Dibromof	luoromethane	100	88.4-108	5	%REC	53.2	8/5/2008 3:43:00 PM
	48	95.4	90-112	2	%REC	53.2	8/5/2008 3:43:00 PM

J Analyte detected below quantitation limits ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

M Manual Integration used to determine area response

Page 2 of 22

RL Reporting Detection Limit

.

) Oratories, inc.		Livonia, Michi TEL: 73	4.422.800 4.422.534	0 0 2 <u>n</u>	·	nalytical (consolida WO#: Date Reported:	nted) 0807A01 8/11/2008
CLIENT:	Environmental Consultin	g & Techr	iology, Inc.	Collect	ion Date:	7/28/2	:008 1:15:00 PI	M
Project:	Hayes-Lemmert - 08-051	4						
Lab ID:	0807A01-001				Matrix:	SOIL		
Client Sample	ID D-2 13.5'							
Analyses	1	Result	RL Qual	Units		DF	Date Analyz	zed
VOLATILE OF PERCENT MC	RGANIC COMPOUNDS - BTE DISTURE	x			D2216		Anal	lyst: RJ
Percent Moistu	ire	17	1.0	wt%		1	8/1/2008 10:1	10:00 AM

Qualifiers:

- E Value above quantitation range
- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response
- RL Reporting Detection Limit

RTI LABORATORIES, INC.

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000 FAX: 734.422.5342 Website: www.rtilab.com

Analytical Report

(consolidated) WO#: 0807A01 8/11/2008 Date Reported:

POLYNUCLEAR	AROMATIC HYDRO	DCARBONS		SW8310		Analyst: MB
Analyses	маранан алар жара бар аран алар алар алар алар алар алар ал	Result	RL Qual	Units	DF	Date Analyzed
Client Sample ID	GW-2					<u></u>
Lab ID:	0807A01-002			Matrix:	GROU	NDWATER
Project:	Hayes-Lemmert -	08-0514				
CLIENT:	Environmental Co	nsulting & Techn	ology, Inc.	Collection Date:	7/29/20	008 7:35:00 AM

2-Methylnaphthalene	ND	3.3		µg/L	1	8/7/2008 5:43:44 PM
Acenaphthene	ND	3.3		µg/L	1	8/7/2008 5:43:44 PM
Acenaphthylene	ND	3.3		µg/L	1	8/7/2008 5:43:44 PM
Anthracene	0.25	3.3	J	µg/L	1	8/7/2008 5:43:44 PM
Benz(a)anthracene	ND	3.3		µg/L	1	8/7/2008 5:43:44 PM
Benzo(a)pyrene	ND	3.3		µg/L∙	1	8/7/2008 5:43:44 PM
Benzo(b)fluoranthene	ND .	3.3		µg/L	1	8/7/2008 5:43:44 PM
Benzo(g,h,i)perylene	ND	3.3		µg/L	1	8/7/2008 5:43:44 PM
Benzo(k)fluoranthene	0.83	3.3	J	µg/L	1	8/7/2008 5:43:44 PM
Chrysene	ND	3.3		µg/L	1	8/7/2008 5:43:44 PM
Dibenz(a,h)anthracene	ND	3.3		µg/L	1	8/7/2008 5:43:44 PM
Fluoranthene	ND	3.3		µg/L	1	8/7/2008 5:43:44 PM
Fluorene	ND	3.3		µg/L	1	8/7/2008 5:43:44 PM
Indeno(1,2,3-cd)pyrene	ND	3.3		µg/L	1	8/7/2008 5:43:44 PM
Naphthalene	6.9	3.3		µg/L	1	8/7/2008 5:43:44 PM
Phenanthrene	0.83	3.3	J	µg/L	1	8/7/2008 5:43:44 PM
Pyrene	ND	3.3		µg/L	1	8/7/2008 5:43:44 PM
Surr: p-Terphenyl	86.1	70-130		%REC	1	8/7/2008 5:43:44 PM
VOLATILE ORGANIC COMPOUNDS VOLATILE ORGANIC COMPOUNDS	- BTEX			SW820	60B	Analyst: MT3
Benzene	0.70	1.0	J	µg/L	[`] 1	8/1/2008 6:00:00 PM
Ethylbenzene	0.29	1.0	J	µg/L	1	8/1/2008 6:00:00 PM
Methyl tert-butyl ether	27	5.0		µg/L	1	8/1/2008 6:00:00 PM
Toluene	1.5	1.0		µg/L	1	8/1/2008 6:00:00 PM
Xylenes, Total	2.1	3.0	J	µg/L	1	8/1/2008 6:00:00 PM

Surr: 4-Bromofluorobenzene	109	70-130	%REC	1
Surr: Dibromofluoromethane	. 104	70-130	%REC	1
Surr: Toluene-d8	92.3	70-130	%REC	1

*/37		
*/X	Value exceeds Maximum Contaminant Level	

- В Analyte detected in the associated Method Blank
- Н Holding times for preparation or analysis exceeded
 - Manual Integration used to determine area response М

RL Reporting Detection Limit .

8/1/2008 6:00:00 PM

8/1/2008 6:00:00 PM

8/1/2008 6:00:00 PM

Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

Analyte detected below quantitation limits

Value above quantitation range

Qualifiers:

Е

J

ND

COD RTI LABORA	atories, in	G.	Livonia 1 F	a, Mich TEL: 73 TAX: 73	Glendale St. igan 48150 4.422.8000 4.422.5342 <u>. rtilab.com</u>	v	(consolida (consolida WO#: Date Reported:	-
CLIENT: E	Invironmental Consul	ting & Tech	10logy, Inc		Collection Dat	e: 7/29/2	.008 9:10:00 A	M
Project: H	layes-Lemmert - 08-0	514						
0	807A01-003				Mətri	x: SOIL		
					Matri	A. DOIL		
Client Sample ID P	-1 2							
nalyses		Result	RL	Qual	Units	DF	Date Analyz	ed
	ROMATIC HYDROCA RGANIC COMPOUN				SW8270	с	Anal	yst: JW
2-Methylnaphthalene		ND	170		µg/Kg-dry	1	8/8/2008 9:51	:00 PM
Acenaphthene		ND	170		µg/Kg-dry	1	8/8/2008 9:51	:00 PM
Acenaphthylene		ND	170		µg/Kg-d ry	1 ·	8/8/2008 9:51	:00 PM
Anthracene		49	170	J	µg/Kg-dry	1	8/8/2008 9:51	
Benz(a)anthracene		330	170		µg/Kg-dry	1	8/8/2008 9:51	:00 PM
Benzo(a)pyrene		300	170		µg/Kg-dry	1	8/8/2008 9:51	:00 PM
Benzo(b)fluoranthene		490	170		µg/Kg-dry	1	8/8/2008 9:51	:00 PM
Benzo(g,h,i)perylene		210	170		µg/Kg-dry	1	8/8/2008 9:51	:00 PM
Benzo(k)fluoranthene		170	170		µg/Kg-dry	1	8/8/2008 9:51	:00 PM
Chrysene		350	170		µg/Kg-dry	1	8/8/2008 9:51	:00 PM
Dibenz(a,h)anthracen	e	42	170	J	µg/Kg-dry	1	8/8/2008 9:51	:00 PM
Fluoranthene		630	170		µg/Kg-dry	1	8/8/2008 9:51	:00 PM
Fluorene		ND	170		µg/Kg-dry	1	8/8/2008 9:51	
Indeno(1,2,3-cd)pyrer	ne	190	170	•	µg/Kg-dry	1	8/8/2008 9:51	
Naphthalene		ND	170		µg/Kg-dry	1	8/8/2008 9:51	
Phenanthrene		260	170		µg/Kg-dry	1	8/8/2008 9:51	
Pyrene	•	590	170		µg/Kg-dry	1	8/8/2008 9:51	
Surr: 2,4,6-Tribrom		81.6	25-93.9		%REC	1	8/8/2008 9:51	
Surr: 2-Fluorobiphe	enyl .	88.9	26-105		%REC	1	8/8/2008 9:51	
Surr: 2-Fluorophen		74.1	25-120		%REC	1	8/8/2008 9:51	
Surr: Nitrobenzene	-d5	76.2	30.1-104		%REC	1	8/8/2008 9:51	
Surr: Phenol-d5		74.4	25-118		%REC	1	8/8/2008 9:51	
Surr: Terphenyl-d1	4 .	91.6	27.1-115		%REC	1 -	8/8/2008 9:51	.00 Pivi
VOLATILE ORGAN VOLATILE ORGAN	IC COMPOUNDS - B	TEX			SW8260	В	Anal	yst: MT3
Benzene		65	54		µg/Kg-dry	51.9	8/5/2008 4:08	8:00 PM
Ethylbenzene		41	54	J	µg/Kg-dry	51.9	8/5/2008 4:08	:00 PM
Toluene		510	. 54		µg/Kg-dry	51.9	8/5/2008 4:08	:00 PM
Xylenes, Total		210	160		µg/Kg-dry	51.9	8/5/2008 4:08	
Surr: 4-Bromofluor		99.3	90-115		%REC	51.9	8/5/2008 4:08	
Surr: Dibromofluor	omethane	99.6	88.4-108		%REC	51.9	8/5/2008 4:08	
Surr: Toluene-d8		96.8	90-112		%REC	51.9	8/5/2008 4:08	:00 PM
E V	alue exceeds Maximum Cor alue above quantitation rang nalyte detected below quant	;e			H Holding times	for preparat	ociated Method Bla ion or analysis exce o determine area resp	eded

J ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

RL Reporting Detection Limit

Page 5 of 22

RTI LABORATORIES, INC.

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000 FAX: 734.422.5342 Website: <u>www.rtilab.com</u>

Analytical Report

(consolidated) WO#: 0807A01 Date Reported: 8/11/2008

CLIENT:	Environmental Con	sulting & Techno	ology, Inc.	Collection Date:	7/29/2	008 9:10:00 AM
Project:	Hayes-Lemmert - 08	3-0514				
Lab ID:	0807A01-003			Matrix:	SOIL	
Client Sample ID	P-1 2'					
Analyses		Result	RL Qual	Units	DF	Date Analyzed
VOLATILE ORGA		- BTEX		D2216		Analyst: RJ
Percent Moisture		3.5	1.0	wt%	1	8/1/2008 10:10:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B^{\cdot} \quad Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response

RL Reporting Detection Limit

COD RTI LABORATORIES, IN	6.	Livonia, Mich TEL: 73	4.422.8000 4.422.5342	v	tical Report (consolidated) VO#: 0807A01 Date Reported: 8/11/2008
LIENT: Environmental Consul	ting & Techı	nology, Inc.	Collection Dat	te: 7/29/2	008 9:40:00 AM
roject: Hayes-Lemmert - 08-0	514				
ab ID: 0807A01-004			Matri	ix: SOIL	
			Watt	A. SULL	
Client Sample ID P-2 2'					
nalyses	Result	RL Qual	Units	DF	Date Analyzed
POLYNUCLEAR AROMATIC HYDROCA SEMI-VOLATILE ORGANIC COMPOUN			SW8270	C	Analyst: JW
2-Methylnaphthalene	ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Acenaphthene	ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Acenaphthylene	ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Anthracene	ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Benz(a)anthracene	ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Benzo(a)pyrene	, ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Benzo(b)fluoranthene	ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Benzo(g,h,i)perylene	ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Benzo(k)fluoranthene	ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Chrysene	ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Dibenz(a,h)anthracene	ND	170	µg/Kg-d ry	1	8/8/2008 10:16:00 PM
Fluoranthene	ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Fluorene	ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Indeno(1,2,3-cd)pyrene	ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Naphthalene	ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Phenanthrene	ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Pyrene	ND	170	µg/Kg-dry	1	8/8/2008 10:16:00 PM
Surr: 2,4,6-Tribromophenol	65.9	25-93.9	%REC	1	8/8/2008 10:16:00 PM
Surr: 2-Fluorobiphenyl	75.3	26-105	%REC	1	8/8/2008 10:16:00 PM
Surr: 2-Fluorophenol	66.0	25-120	%REC	1	8/8/2008 10:16:00 PM
Surr: Nitrobenzene-d5	66.9	30.1-104	%REC	1	8/8/2008 10:16:00 PM
Surr: Phenol-d5	67.1	25-118	%REC	1	8/8/2008 10:16:00 PM
Surr: Terphenyl-d14	78.1	27.1-115	%REC	1	8/8/2008 10:16:00 PM
VOLATILE ORGANIC COMPOUNDS - E VOLATILE ORGANIC COMPOUNDS	TEX		SW8260	B	Analyst: MT3
Benzene	ND	59	µg/Kg-dry	56.8	8/5/2008 4:33:00 PM
Ethylbenzene	ND	59	µg/Kg-dry	56.8	8/5/2008 4:33:00 PM
Methyl tert-butyl ether	ND	300	µg/Kg-dry	56.8	8/5/2008 4:33:00 PM
Toluene	ND	59	µg/Kg-d ry	56.8	8/5/2008 4:33:00 PM
Xylenes, Total	ND	180	µg/Kg-dry	56.8	8/5/2008 4:33:00 PM
Surr: 4-Bromofluorobenzene	100	90-115	%REC	56.8	8/5/2008 4:33:00 PM
Surr: Dibromofluoromethane	102	88.4-108	%REC	56.8	8/5/2008 4:33:00 PM
Surr: Toluene-d8	96.4	90-112	%REC	56.8	8/5/2008 4:33:00 PM
Qualifiers: */X Value exceeds Maximum Cor	taminant Level		B Analyte detec	ted in the asso	ociated Method Blank
E Value above quantitation rang			-		on or analysis exceeded
J Analyte detected below quant				-	determine area response
ND Not Detected at the Reporting			RL Reporting De		
THE THE DECORD AT THE REPORTING			itoporting De		Page 7 of 2

RTI LABORATORIES, INC.

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000 FAX: 734.422.5342 Website: <u>www.rtilab.com</u>

Analytical Report

(consolidated) WO#: 0807A01 Date Reported: 8/11/2008

CLIENT:	Environmental Con	sulting & Techno	ology, Inc.	Collection Date	: 7/29/2	2008 9:40:00 AM
Project:	Hayes-Lemmert - 0	3-0514				
Lab ID:	Ö807A01-004			Matrix	: SOIL	
Client Sample ID	P-2 2'					
Analyses		Result	RL Qual	Units	DF	Date Analyzed
VOLATILE ORGA	ANIC COMPOUNDS	- BTEX		D2216		Analyst: RJ
Percent Moisture		4.5	1.0	wt%	1	8/1/2008 10:10:00 AM

Qualifiers:

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

- J Analyte detected below quantitation limits
- ND Not Detected at the Reporting Limit
- S Spike Recovery outside accepted recovery limits
- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 8 of 22

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000 FAX: 734.422.5342 Website: <u>www.rtilab.com</u>

Analytical Report

(consolidated) WO#: 0807A01 Date Reported: 8/11/2008

8/1/2008 4:14:00 PM

8/1/2008 4:14:00 PM

8/1/2008 4:14:00 PM

8/1/2008 4:14:00 PM

CLIENT:	Environmental Cons	ulting & Techno	ology, Inc.	Collection I	Date:	
Project:	Hayes-Lemmert - 08	-0514				
Lab ID:	0807A01-005			Ma	trix: WAT	ER
Client Sample I	D Water Trip Blank					
Analyses		Result	RL Qual	Units	DF	Date Analyzed
		an an a 2 2 24 and 2 2 4				an ana anna is ann ann an
	GANIC COMPOUNDS - GANIC COMPOUNDS	BTEX		SW82	60B	Analyst: MT3
		BTEX ND	1.0	SW82 µg/L	60B 1	Analyst: MT3 8/1/2008 4:14:00 PM
VOLATILE OR			1.0 <u>.</u> 1.0		60B 1 1	·
VOLATILE OR Benzene	GANIC COMPOUNDS	ND	•	μg/L	60B 1 1 1	8/1/2008 4:14:00 PM

3.0

µg/L

1

1

1

1

 Surr: 4-Bromofluorobenzene
 106
 70-130
 %REC

 Surr: Dibromofluoromethane
 104
 70-130
 %REC

 Surr: Toluene-d8
 103
 70-130
 %REC

ND

Qualifiers:

Xylenes, Total

*/X Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response

RL Reporting Detection Limit

rti laboratories, inc.

31628 Glendale St. Livonia, Michigan 48150 TEL: 734.422.8000 FAX: 734.422.5342 Website: <u>www.rtilab.com</u>

Analytical Report

(consolidated) WO#: 0807A01 Date Reported: 8/11/2008

CLIENT:	Environmental Cons	ulting & Techn	ology, Inc.	Collection D	ate:	
Project:	Hayes-Lemmert - 08	-0514				
Laḃ ID:	0807A01-006			Mat	rix: METH	HANOL
Client Sample I	D Methanol Trip Blanl	c				
Analyses		Result	RL Qual	Units	DF	Date Analyzed
	GANIC COMPOUNDS - GANIC COMPOUNDS	BTEX		SW826	50B	Analyst: MT3
Renzene		ND	50	μα/Κα	50	8/5/2008 3:15:00 PM

Delizene		. 00	P9/119	00	0/0/2000 0.10.001 14	
Ethylbenzene	ND	50	µg/Kg	50	8/5/2008 3:15:00 PM	
Methyl tert-butyl ether	ND	250	µg/Kg	50	8/5/2008 3:15:00 PM	
Toluene	ND	50	µg/Kg	50	8/5/2008 3:15:00 PM	
Xylenes, Total	ND	150	µg/Kg	50	8/5/2008 3:15:00 PM	
Surr: 4-Bromofluorobenzene	100	90-115	%REC	50	8/5/2008 3:15:00 PM	
Surr: Dibromofluoromethane	97.9	88.4-108	%REC	50	8/5/2008 3:15:00 PM	
Surr: Toluene-d8	93.6	90-112	%REC	50	8/5/2008 3:15:00 PM	

Qualifiers:

*/X

Value exceeds Maximum Contaminant Level

E Value above quantitation range

J Analyte detected below quantitation limits

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

- B Analyte detected in the associated Method Blank
- H Holding times for preparation or analysis exceeded
- M Manual Integration used to determine area response

RL Reporting Detection Limit

Page 10 of 22

RTI Laboratories

Date: 11-Aug-08

CLIENT: Environmental Consulting & Technology, I

Work Order: 0807A01

Project: Hayes-Lemmert - 08-0514

QC SUMMARY REPORT

BatchID: 11881

Sample ID: LCS-11881	SampType: LCS	TestCod	e: SW_8270S	Units: µg/Kg	•	Prep Date:	8/5/2008	3	RunNo: 225	66	
Client ID: LCSS	Batch ID: 11881	TestN	D: SW8270C			Analysis Date:	: 8/8/2008	3	SeqNo: 370	337	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Methylnaphthalene	500	160	666.7	0	74.6	49.3	102				
Acenaphthene	540	160	666.7	0	81.1	55	110				
Acenaphthylene	530	160	666.7	0	79.7	53.9	104				
Anthracene	580	160	666.7	0	86.3	59.9	111				
Benz(a)anthracene	600	160	666.7	0	90.2	62.9	113				
Benzo(a)pyrene	580	160	666.7	0	86.3	64.4	112				
Benzo(b)fluoranthene	550	160	666.7	0	82.6	56.2	116				
Benzo(g,h,i)perylene	550	160	666.7	0	82.3	56.6	121				
Benzo(k)fluoranthene	660	160	666.7	0	98.7	59	125				
Chrysene	600	160	666.7	0	90.6	64.2	117				
Dibenz(a,h)anthracene	570	160	666.7	0	85.2	61.7	117				
Fluoranthene	580	160	666.7	0	86.4	55.5	116				
Fluorene	570	160	666.7	0	86.0	57.9	117				
Indeno(1,2,3-cd)pyrene	570	160	666.7	0 ·	85.8	63.3	114				
Naphthalene	460	160	666.7	0	68.8	47.8	106				•
Phenanthrene	590	160	666.7	0	88.0	61.9	112				
Pyrene	590	160	666.7	0	87.9	60.3	120				
Surr: 2,4,6-Tribromophenol	720		833.3		86.8	24.6	180				
Surr: 2-Fluorobiphenyl	610		833.3		72.9	23.8	⁻ 116				
Surr: 2-Fluorophenol	560		833.3		66.9	26.6	142				
Surr: Nitrobenzene-d5	540		833.3		64.8	21.1	116				
Surr: Phenol-d5	550		833.3		65.9	17	137				
Surr: Terphenyl-d14	630		833.3		75.1	30.3	132				
Sample ID: MB-11881	SampType: MBLK	TestCod	e: SW_8270S	Units: µg/Kg		Prep Date	8/5/2008	3	RunNo: 225	566	
Client ID: PBS	Batch ID: 11881	TestN	o: SW8270C			Analysis Date	: 8/8/2008	3	SeqNo: 370	338	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit I	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual [·]
2-Methylnaphthalene	ND	160				<u>-</u>					

Qualifiers: E

E Value above quantitation range-

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

ND Not Detected at the Reporting LimitS pike Recovery outside accepted recovery limits

J Analyte detected below quantitation lin

R RPD outside accepted recovery limits

:

RL Reporting Detection Limit

Pa

CLIENT: Environmental Consulting & Technology, I Work Order: 0807A01

Hayes-Lemmert - 08-0514

Project:

QC SUMMARY REPORT

BatchID: 11881

Sample ID: MB-11881	SampType: MBLK	TestCode: SW_8270	S Units: µg/Kg		Prep Date:	8/5/2008		RunNo: 225	66	
Client ID: PBS	Batch ID: 11881	TestNo: SW8270C			Analysis Date:	8/8/2008	;	SeqNo: 370	338	
Analyte	Result	PQL `SPK value	SPK Ref Val	%REC	LowLimit H	lighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Acenaphthene	ND	160								
Acenaphthylene	ND	160								
Anthracene	· ND	160								
Benz(a)anthracene	ND	160								
Benzo(a)pyrene	ND	160								
Benzo(b)fluoranthene	ND	160 •								
Benzo(g,h,i)perylene	ND	160								
Benzo(k)fluoranthene	ND	160								
Chrysene	ND	160								
Dibenz(a,h)anthracene	. ND	160								
Fluoranthene	ND	160								
Fluorene	ND	160								
Indeno(1,2,3-cd)pyrene	ND	160								
Naphthalene	ND	160								
Phenanthrene	ND	160								
Pyrene	. ND	[`] 160								
Surr: 2,4,6-Tribromophenol	660	833.3		78.8	50	130				
Surr: 2-Fluorobiphenyl	710	833.3		85.8	50	130				
Surr: 2-Fluorophenol	610	833.3		73.1	50	130				
Surr: Nitrobenzene-d5	630	833.3		75.7	50	130				
Surr: Phenol-d5	610	833.3		73.7	50	130				
Surr: Terphenyl-d14	770	833.3		92.2	50	130				
Sample ID: 0808062-001BMS	SampType: MS	TestCode: SW_8270	S Units: µg/Kg-o	dry	Prep Date:	8/5/2008	3	RunNo: 225	66	
Client ID: ZZZZZZ	Batch ID: 11881	TestNo: SW8270C			Analysis Date:	8/8/2008	3	SeqNo: 370	343	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit H	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual -
2-Methylnaphthalene	540	180 741.2	· 0	72.8	50	130	· · ·			
Acenaphthene	600	180 741.2	0	81.5	50	130				
Acenaphthylene	580	180 741.2	0	78.0	50	130				
Anthracene	. 640	180 741.2	50.03	79.7	50	130				
-	quantitation range ration used to determine area res tection Limit	oonse ND Not D	ng times for preparation petected at the Reporting Recovery outside accep	, Limit			nalyte detected be PD outside accep		its	e 12 of 2

CLIENT: Environmental Consulting & Technology, I

QC SUMMARY REPORT

Hayes-Lemmert - 08-0514 **Project:**

0807A01

Work Order:

BatchID: 11881

Sample ID: 0808062-001BMS	SampType: MS	TestCoo	le: SW_8270S	Units: µg/K	g-dry	Prep Dat	e: 8/5/200	8	RunNo: 225	66	
Client ID: ZZZZZZ	Batch ID: 11881	TestN	lo: SW8270C			Analysis Dat	e: 8/8/200	8	SeqNo: 370	343	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benz(a)anthracene	890	180	741.2	332.4	74.8	50	130				
Benzo(a)pyrene	930	180	741.2	384.3	73.9	50	130				
Benzo(b)fluoranthene	980	180	741.2	486.9	65.8	50	130				
Benzo(g,h,i)perylene	1,100	180	741.2	493.6	75.2	50	. 130				
Benzo(k)fluoranthene	990	180	741.2	290.5	94.1	50	130				
Chrysene	980	180	741.2	394.7	79.1	50	130				
Dibenz(a,h)anthracene	720	180	741.2	0	97.3	50	130				
Fluoranthene	1,000	180	741.2	595.9	57.5	50	130				
Fluorene	. 620	180	741.2	0	83.1	50	130				
Indeno(1,2,3-cd)pyrene	900	180	741.2	366.9	72.2	50	130				
Naphthalene	500	180	741.2	0	66.8	50	130				
Phenanthrene	780	180	741.2	303.1	64.9	50	130				
Pyrene	1,300	180	741.2	665.2	89.8	50	130				
Surr: 2,4,6-Tribromophenol	720		926.5		77.8	50	130				
Surr: 2-Fluorobiphenyl	. 660		926.5		71.5	50	130				
Surr: 2-Fluorophenol	580		926,5		62.4	50	130				
Surr: Nitrobenzene-d5	590		926.5		63.5	50	130				
Surr: Phenol-d5	600		926.5		65.1	50	130				
Surr: Terphenyl-d14	870		926.5		94.2	50	130				
Sample ID: 0808062-001BMSD	SampType: MSD	TestCo	le: SW_8270S	Units: µg/K	g-dry	Prep Dat	e: 8/5/200	8	RunNo: 225	66	
Client ID: ZZZZZZ	Batch ID: 11881	Test	lo: SW8270C			Analysis Dat	te: 8/8/200	8	SeqNo: 370	344	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
2-Methylnaphthalene	510	180	741.2	0	68.7	50	130	539.9	5.79	25	
Acenaphthene	550	180	741.2	0	73.7	50	130	604.1	10.1	25	
Acenaphthylene	520	180	741.2	0	69.6	50	130	578.5	11.4	25	
Anthracene	580	180	741.2	50.03	70.9	50	130	641.1	10.8	25	
Benz(a)anthracene	850	180	. 741.2	332.4	70.3	50	130	886.8	3.79	25	
Benzo(a)pyrene	920	180	741.2	384.3	72.9	50	130	932.4	0.798	25	
Benzo(b)fluoranthene	930	180	741.2	486.9	59.5	50	130	975.0	4.95	25	

М Manual Integration used to determine area response ND Not Detected at the Reporting Limit Spike Recovery outside accepted recovery limits S

R RPD outside accepted recovery limits

Page 13 of 22

RL Reporting Detection Limit

CLIENT: Environmental Consulting & Technology, I

Work Order: 0807A01

Project: Hayes-Lemmert - 08-0514

QC SUMMARY REPORT

BatchID: 11881

Sample ID: 0808062-001BMSD	SampType: MSD	TestCoo	le: SW_8270S	- Units: μg/K	g-dry	Prep Da	te: 8/5/200	8	RunNo: 225	66	
Client ID: ZZZZZZ	Batch ID: 11881	⊤estN	lo: SW8270C			Analysis Da	te: 8/8/200	8	SeqNo: 370	344	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(g,h,i)perylene	1,300	180	741.2	493.6	114	50	· 130	1,051	24.0	25	
Benzo(k)fluoranthene	920	180	741.2	290.5	84.5	50	130	988.3	7.51	25	
Chrysene	960	180	741.2	394.7	75.9	50	130	981.3	2.45	25	
Dibenz(a,h)anthracene	800	180	741.2	0	108	50	130	721.5	10.6	25	
Fluoranthene	910	180	741.2	595.9	42.5	50	130	1,022	11.5	25	S
Fluorene	560	180	741.2	0	75.2	50	130	615.9	9.91	25	
Indeno(1,2,3-cd)pyrene	1,100	180	741.2	366.9	98.0	50	130	902.0	19.2	25	
Naphthalene	430	180	741.2	0	58.6	50	130	495.5	13.1	. 25	
Phenanthrene	740	180	741.2	303.1	59.1	50	130	784.2	5.64	25	
Pyrene	1,300	180	741.2	665.2	84.5	50	130	1,331	3.00	25	
Surr: 2,4,6-Tribromophenol	630		926.5		68.2	50	130		0	25	
Surr: 2-Fluorobiphenyl	570		926.5		61.7	50	130		0	25	
Surr: 2-Fluorophenol	500		926.5		53.6	50	130		0	25	
Surr: Nitrobenzene-d5	510		926.5		55.1	50	130		<u></u> 0	25	
Surr: Phenol-d5	520		926.5		55.8	50	130		0	25	
Surr: Terphenyl-d14	730		926.5		78.5	50	130		0	25	

Qualifiers:

H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation lin

R RPD outside accepted recovery limits

M Manual Integration used to determine area response

RL Reporting Detection Limit

ND Not Detected at the Reporting LimitS Spike Recovery outside accepted recovery limits

Page 14 of 22

CLIENT: Environmental Consulting & Technology, I

Work Order: 0807A01

Hayes-Lemmert - 08-0514 **Project:**

QC SUMMARY REPORT

BatchID: 11890

Sample ID: Ics-11890	SampType: Ics	TestCoo	ie: sw_8310a	Units: µg/L		Prep Dat	e: 8/4/200	8	RunNo: 225	33	
Client ID: LCSW	Batch ID: 11890	TestN	lo: SW8310			Analysis Dat	te: 8/7/200	8	SeqNo: 369	738	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Methylnaphthalene	20	1.0	22.50	0	87.3	70	130				
Acenaphthene	48	1.0	50.00	0	95.0	70	130				
Acenaphthylene	40	1.0	50.00	0	79.4	70	130				
Anthracene	4.1	1.0	5.000	0	82.6	70	130				
Benz(a)anthracene	4.7	1.0	5.000	0	94.1	70	130				
Benzo(a)pyrene	5.1	1.0	5.000	0	102	70	130				
Benzo(b)fluoranthene	4.7	1.0	5.000	0	93.2	70	130				
Benzo(g,h,i)perylene	5.2	1.0	5.000	0	104	70	130				
Benzo(k)fluoranthene	4.9	1.0	5.000	0	98.1	70	130				
Chrysene	4.8	1.0	5.000	0	95.2	70	130				
Dibenz(a,h)anthracene	4.8	1.0	5.000	0	95.3	70	130				
Fluoranthene	4.3	1.0	5.000	0	86.0	70	130				
Fluorene	4.1	1.0	5,000	· 0	82.8	70	130				
Indeno(1,2,3-cd)pyrene	4.8	1.0	5,000	0	97.0	70	130				
Naphthalene	44	1.0	50.00	0	87.3	70	130				
Phenanthrene	4.4	1.0	5.000	0	88.3	70	130				
Pyrene	4.7	1.0	5.000	0	93.4	70	130				
Surr: p-Terphenyl	5.0		5.000		101	70	130				
Sample ID: icsd-11890	SampType: Icsd	TestCo	le: sw_8310a	Units: µg/L		Prep Dal	te: 8/4/200	8	RunNo: 225	533	
Client ID: LCSS02	Batch ID: 11890	TestN	lo: SW8310			Analysis Dat	te: 8/7/200	8	SeqNo: 369	739	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Methylnaphthalene	21	1.0	22.50	0	94,9	70	130	19.64	8.30	25	
Acenaphthene	47	1.0	50.00	0	93.4	70	130	47.51	[:] 1.72	25	
Acenaphthylene	41	1.0	50.00	0	81.4	70	130	39.70	2.50	25	
Anthracene	4.1	1.0	5.000	0	82,9	70	130	4.130	0.402	25	
Benz(a)anthracene	4.7	1.0	5.000	0	94.7	70	130	4.705	0.639	25	
Benzo(a)pyrene	5.3	1.0	5.000	0	106	70	130	5.100	3.53	25	
Benzo(b)fluoranthene	4.8	1.0	5.000	0	95.6	70	130	4.661	2.49	25	
Benzo(g,h,i)perylene	4.9	1.0	5.000	0	98.8	70	130	5.208	5.30	25	
Qualifiers: E Value abo	ove quantitation range		H Holdin	g times for preparation	or analysis	exceeded	 J	Analyte detected be	elow quantitation		

M Manual Integration used to determine area response

ND Not Detected at the Reporting Limit

Spike Recovery outside accepted recovery limits S

R RPD outside accepted recovery limits

Page 15 of 22

RL Reporting Detection Limit

CLIENT:Environmental Consulting & Technology, IWork Order:0807A01

Project: Hayes-Lemmert - 08-0514

QC SUMMARY REPORT

BatchID: 11890

Sample ID: Icsd-11890	SampType: Icsd	TestCod	ie: sw_8310a	Units: µg/L		Prep Dat	e: 8/4/200	8	RunNo: 22	533	
Client ID: LCSS02	Batch ID: 11890	Test	lo: SW8310			Analysis Dat	e: 8/7/200	8	SeqNo: 369	9739	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzo(k)fluoranthene	5.0	1.0	5.000	0	99.7	70	130	4.907	1.53	25	
Chrysene	4.8	1.0	5.000	0	96.5	70	130	4.760	1.30	25	
Dibenz(a,h)anthracene	4.6	1.0	5.000	0	91.5	· 70	130	4.767	4.07	25	
Fluoranthene	4.4	1.0	5.000	0	87.7	70	130	4.298	2.01	25	
Fluorene	4.5	1.0	5.000	0	89.4	70	130	4.139	7.64	25	
Indeno(1,2,3-cd)pyrene	4.8	1.0	5.000	0	96.2	70	130	4.848	0.820	25	
Naphthalene	. 48	1.0	50.00	0	96.4	70	130	43.66	9.85	25	
Phenanthrene	4.6	1.0	5.000	0	92.0	70	130	4.416	4.11	25	
Pyrene	4.8	1.0	5.000	0	96.5	70	130	4,672	3.21	25	
Surr: p-Terphenyl	5.1		5.000	. *	101	70	130		0	25	
Sample ID: mb-11890	SampType: mblk	TestCo	le: sw_8310a	Units: µg/L		Prep Dat	e: 8/4/200	8	RunNo: 22	533	<u> </u>
Client ID: PBW	Batch ID: 11890	⊤estN	lo: SW8310			Analysis Dat	e: 8/7/200	8	SeqNo: 36	9740	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
2-Methylnaphthalene	ND	1,0		-							
Acenaphthene	ND	1.0									
Acenaphthylene	ND	1.0	•								
Anthracene	ND	1.0		•							
Benz(a)anthracene	ND	1.0									
Benzo(a)pyrene	ND	1.0							;		
Benzo(b)fluoranthene	ND	1.0							:		
Benzo(g,h,i)perylene	ND	1.0									
Benzo(k)fluoranthene	ND	1.0									
Chrysene	ND	1.0									
Dibenz(a,h)anthracene	ND	1.0									
Fluoranthene	ND	1.0									
Fluorene	ND	1.0									
Indeno(1,2,3-cd)pyrene	ND	1.0									
Naphthalene	ND	1.0									
Phenanthrene	ND	1.0									
	ve quantitation range			g times for preparation		exceeded		Analyte detected be	-		· · ·
	tegration used to determine area re Detection Limit	sponse		etected at the Reportin Recovery outside acce		y limits	RI	PD outside accep	ted recovery lim	its Pag	ge 16 c

Environmental Consulting & Technology, I **CLIENT:** Work Order: 0807A01 Hayes-Lemmert - 08-0514 **Project:**

QC SUMMARY REPORT

BatchID: 11890

Sample ID: mb-11890	SampType: mblk	TestCode: sw_8310a	Units: µg/L		Prep Da	te: 8/4/200	8	RunNo: 22	533	
Client ID: PBW	Batch ID: 11890	TestNo: SW8310			Analysis Da	te: 8/7/200	8	SeqNo: 369	9740	
Analyte	Result	PQL SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Quai
Pyrene Surr: p-Terphenyl	ND 5.8	1.0 5.000		115	70	130				

•

Qualifiers:

Value above quantitation range Ε

H Holding times for preparation or analysis exceeded

Manual Integration used to determine area response М

RL Reporting Detection Limit

Not Detected at the Reporting Limit ND

S Spike Recovery outside accepted recovery limits

Analyte detected below quantitation lin J

R RPD outside accepted recovery limits

Page 17 of 22

CLIENT: Environmental Consulting & Technology, I

Hayes-Lemmert - 08-0514

0807A01

Work Order:

Project:

QC SUMMARY REPORT

BatchID: R22421

Sample ID: 10ug/L LCS 10uL	SampType: LCS	TestCoo	de: SW_8260A	Units: µg/L		Prep Da	te:		RunNo: 224	21	
Client ID: LCSW	Batch ID: R22421	· TestN	lo: SW8260B			Analysis Da	te: 8/1/200	8	SeqNo: 367	626	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	8.6	1.0	10.00	0	86.5	70	130				
Ethylbenzene	9.1	1.0	10.00	0	91.2	70	130				
Methyl tert-butyl ether	17	5.0	20.00	0	84.8	70	130				
Toluene	9.2	1.0	10.00	0	92.0	70	130				
Xylenes, Total	27	3.0	30.00	0	89.1	70	130				
Surr: 4-Bromofluorobenzene	54		50.00		107	70	130				
Surr: Dibromofluoromethane	51		50.00		101	70	130				
Surr: Toluene-d8	53		50.00		107	70	130				
Sample ID: MBLK 5mL DI H2O(SampType: MBLK	TestCo	de: SW_8260A	ν Units: μg/L		Prep Da	ite:		RunNo: 224	21	
Client ID: PBW	Batch ID: R22421	Test№	lo: SW8260B			Analysis Da	ite: 8/1/200	8	SeqNo: 367	628	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	ND	1.0									
Ethylbenzene	ND	1.0							:		
Methyl tert-butyl ether	ND	5.0									
Toluene	ND	1.0									
Kylenes, Total	ND	3.0						•			
Surr: 4-Bromofluorobenzene	53		50.00		106	70	130				
Surr: Dibromofluoromethane	52		50.00		104	70	130				
Surr: Toluene-d8	52		50.00		103	70	130				
Sample ID: 0807A00-001A MS	SampType: MS	TestCo	de: SW_82604	Δ Units: μg/L	•	Prep Da	ate:		RunNo: 224	121	
Client ID: ZZZZZZ	Batch ID: R22421	Test	No: SW8260B			Analysis Da	ate: 8/1/200	8	SeqNo: 367	631	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qua
Benzene	1,400	10	100.0	1,268	110	72.8	143				
Ethylbenzene	750	10	100.0	650.5	104	80.1	128				
Methyl tert-butyl ether	200	50	200.0	0	100	43.4	153				
Toluene	260	. 10	100.0	198.8	63.2	68.6	141				S
Xylenes, Total	2,500	30 ·	300.0	2,239	86.7	72.1	133				
•	quantitation range			ng times for preparatio		exceeded		Analyte detected b			
M Manual Integr	ration used to determine area r	esponse		etected at the Reportin	g Limit		R	RPD outside accept	pted recovery lim	its Doc	ge 18
RL Reporting Det	tection Limit		S Spike	Recovery outside acce	pted recover	y limits				rag	50 10 (

RL Reporting Detection Limit

S Spike Recovery outside accepted recovery limits

CLIENT: Environmental Consulting & Technology, I

Work Order: 0807A01

Project: Hayes-Lemmert - 08-0514

QC SUMMARY REPORT

BatchID: R22421

Sample ID: 0807A00-001A MS	SampType: MS	TestCoo	de: SW_8260A	Units: µg/L		Prep Da	te:		RunNo: 224	21	
Client ID: ZZZZZZ	Batch ID: R22421	⊤estN	lo: SW8260B			Analysis Da	te: 8/1/200	8	SeqNo: 367	631	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	540		500.0		108	92	115	-			
Surr: Dibromofluoromethane	530		500.0		107	81.6	126				
Surr: Toluene-d8	460		500.0		92.9	92.4	112				
Sample ID: 0807A00-001A MSD	SampType: MSD	TestCo	de: SW_8260A	Units: µg/L		Prep Da	te:		RunNo: 224	121	
Client ID: ZZZZZZ	Batch ID: R22421	TestN	lo: SW8260B			Analysis Da	te: 8/1/200	8	SeqNo: 367	633	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	. %RPD	RPDLimit	Qual
Benzene	1,400	10	100.0	1,268	98.0	72,8	143	1,378	0.889	25	
Ethylbenzene	760	10	100.0	650.5	109	. 80.1	128	754.2	0.713	25	
Methyl tert-butyl ether	210	50	200.0	0	.104	43.4	153	200.9	3.38	25	
Toluene	290	10	100.0	198.8	86.9	68.6	141	262.0	. 8.65	25	
Xylenes, Total	2,500	30	300.0	2,239	89.7	72.1	133	2,499	0.363	25	
Surr: 4-Bromofluorobenzene	540		500.0		107	92	115		0	25	
Surr: Dibromofluoromethane	530		500.0		106	81.6	126		0	25	
Surr: Toluene-d8	500		500.0		101	92.4	112		0	25	

Qualifiers:

Е

Value above quantitation range

H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation lin

R

M Manual Integration used to determine area response

RL Reporting Detection Limit

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

RPD outside accepted recovery limits

Page 19 of 22

CLIENT:Environmental Consulting & Technology, I .Work Order:0807A01Project:Hayes-Lemmert - 08-0514

QC SUMMARY REPORT

BatchID: R22423

Sample ID: 0807A01-004BDUP	SampType: DUP	TestCode: PMOIST	Units: wt%	Prep Date:	RunNo: 22423
Client ID: P-2 2'	Batch ID: R22423	TestNo: D2216		Analysis Date: 8/1/2008	SeqNo: 367664
Analyte	Result	PQL SPK value	SPK Ref Val	%REC LowLimit HighLimit RPD Ref Val	%RPD RPDLimit Qual
Percent Moisture	4.1	1.0		4.515	8.47 20

Qualifiers:

Μ

E Value above quantitation range

H Holding times for preparation or analysis exceeded

J Analyte detected below quantitation lin

R RPD outside accepted recovery limits

Manual Integration used to determine area response

RL Reporting Detection Limit

ND Not Detected at the Reporting Limit

S Spike Recovery outside accepted recovery limits

Page 20 of 22

Environmental Consulting & Technology, I CLIENT: Work Order: 0807A01 Hayes-Lemmert - 08-0514 **Project:**

QC SUMMARY REPORT

-

BatchID: R22480

Sample ID: 10ug/KG LCS 10uL	SampType: LCS	TestCod	le: SW_8260S	Units: µg/Kg		Prep Date:			RunNo: 22480			
Client ID: LCSS	Batch ID: , R22480	TestN	o: SW8260B		Analysis Date: 8/5/2008		SeqNo: 368780					
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	530	30	500.0	0	106	70	130					
Ethylbenzene	510	50	500.0	0	103	70	130					
Methyl tert-butyl ether	940	250	1,000	0	93.8	70	130					
Toluene	510	50	500.0	0	102	70	130					
Xylenes, Total	1,500	150	1,500	0	100	70	130					
Surr: 4-Bromofluorobenzene	2,500		2,500		102	90	115					
Surr: Dibromofluoromethane	2,400		2,500		97.6	88.4	108		:			
Surr: Toluene-d8	2,400		2,500		94.4	90	112					
Sample ID: MBLK 1mLMEOH(22	SampType: MBLK	TestCode: SW_8260S		Units: µg/Kg		Prep Date:			RunNo: 22480			
Client ID: PBS	Batch ID: R22480	TestN	lo: SW8260B			Analysis Da	te: 8/5/200	8	SeqNo: 368	781		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	ND	30										
Ethylbenzene	ND	50										
Methyl tert-butyl ether	ND	250										
Toluene	ND	50										
Xylenes, Total	ND	150										
Surr: 4-Bromofluorobenzene	2,500		2,500		100	90	115					
Surr: Dibromofluoromethane	2,500		2,500		101	88.4	108					
Surr: Toluene-d8	2,400		2,500		94.7	90	112					
Sample ID: 0808062-002A MS	SampType: MS	TestCod	le: SW_8260S	Units: µg/Kg	dry	Prep Da	te:		RunNo: 224	180		
Client ID: ZZZZZZ	Batch ID: R22480	TestN	lo: SW8260B			Analysis Da	te: 8/5/200	8	SeqNo: 368	3790		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual	
Benzene	590	32	525.9	0	112	52.5	136					
Ethylbenzene	540	53	525.9	0	102	82.3	119					
Methyl tert-butyl ether	1,000	260	1,052	0	95.8	81.2	116					
Toluene	550	53	525.9	0	104	81.9	119					
Xylenes, Total	1,600	160	1,578	0	100	62.1	143					
Qualifiers: E Value above qu	antitation range		H Holdin	g times for preparation	n or analysis	exceeded	J	Analyte detected b	elow quantitatior	ı lin		
M Manual Integra	ation used to determine area re	sponse	ND Not De	etected at the Reportin	g Limit		RI	RPD outside accep	oted recovery lim	its	- 01 (
RL Reporting Dete	ection Limit		S Snike F	Recovery outside acce	nted recover	v limits				Pag	e 21 of	

RL Reporting Detection Limit

S Spike Recovery outside accepted recovery limits

CLIENT: Environmental Consulting & Technology, I Work Order: 0807A01

Hayes-Lemmert - 08-0514

QC SUMMARY REPORT

BatchID: R22480

Sample ID: 0808062-002A MS	SampType: MS	TestCo	ie: SW_8260S	Units: µg/ł	(g-dry	Prep Da	te:		RunNo: 224	180	•
Client ID: ZZZZZZ	Batch ID: R22480	TestN	lo: SW8260B			Analysis Da	te: 8/5/200	8	SeqNo: 368	3790	
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Surr: 4-Bromofluorobenzene	2,700		2,629		101	95.9	130				
Surr: Dibromofluoromethane	2,800		2,629		105	90.4	111				
Surr: Toluene-d8	2,500		2,629		95.3	100	116		·		S
Sample ID: 0808062-002A MSD	SampType: MSD	TestCo	de: SW_8260S	Units: µg/ł	(g-dry	Prep Da	te:		RunNo: 224	180	
Client ID: ZZZZZZ	.Batch ID: R22480	D TestNo: SW8260B Analysis Dat		te: 8/5/200	2008 SeqNo: 368791						
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Benzene	590	32	525.9	0	112	52.5	136	587.9	0.446	13.5	
Ethylbenzene	530	53	525.9	0	101	82.3	119	535.3	0.690	15.5	
Methyl tert-butyl ether	1,200	260	1,052	0	110 [°]	81.2	116	1,008	13.8	17.5	
Toluene	540 .	53	525.9	0	103	81.9	119	545.3	0.386	16.2	
Xylenes, Total	1,600	160	1,578	0	99.7	62.1	143	1,578	0.334	16.5	
Surr: 4-Bromofluorobenzene	2,700		2,629		103	95.9	130		0	25	
	•										
Surr: Dibromofluoromethane	2,800		2,629		106	90.4	111		0	25	

Qualifiers:

Project:

E Value above quantitation range

H Holding times for preparation or analysis exceeded

M Manual Integration used to determine area response

RL Reporting Detection Limit

ND Not Detected at the Reporting Limit

S

Spike Recovery outside accepted recovery limits

- J Analyte detected below quantitation lin
- R RPD outside accepted recovery limits

Page 22 of 22

	的利用的社会资料的	Plemo Juksio Email Atte	No. of Report Receptore 15	414/808 (1807401
233		Tim H	eBent	SEL TO: Pr	
YES-LEAMENT	08-0514	FCC		ECAN	
PADDLE, MI		AUSTREESE		ADDRESSA	
SAMPLE BOTTLE C	RACKED PART OF WAT	R LANSIN	6 MI	CHIN ATLA E EPA	
B. OVE TO REDUCED	VOLUME VIIO WAS	These These Prese		A PEX IF DE THING AVAGABLES	
. Meyer	and surgery	Arg.	18 ANALYTICAL	PARAMETERS	
		1.	63	Printing (Chis	
SWHFIT	A CONTRACT OF A	Reading the second seco			COMMENTS Methanid Pressive instrument HOP Saturate Pressive
	and the second s	A new A	3 88 8	TONE NON	A Sarahara
)-2 = 13.5'	7:28:08 1315 5	21	I XX	32.4	at Soil total
-1 28'	7.29.08 0910 S	312		Per	TH Shiw PORK
2 . 2'	7:29:08 09:40 5	21	1 22	32.2	10.4 42.5
with CLANK			X	7-55	and the second of the second o
				meth	SULL BLOCK
2/1				him-	AG for GW-2
The	7.30.08 0815405 EC	5019GU	7.30.08 08151195	RECORT TRAD	MITADESHED PJ
MULLET	Car line Pools in	1 2	Contraction of the second s	HARTEONY MORENESS	D mar D Same 08
ne Jana	1-31-08 1310	Domit	13/08 13:10	ALL REPORT AND AN AND THE REAL PROPERTY.	IN THE REPORT OF THE PARTY OF T