

MICHIGAN DEPARTMENT OF ENVIRONMENTAL QUALITY – REMEDIATION AND REDEVELOPMENT DIVISION, PO BOX 30426, LANSING, MICHIGAN 48909-7926, Phone 517-373-9837, Fax 517-373-2637

Baseline Environmental Assessment Submittal Form

This form is for submittal of a Baseline Environmental Assessment (BEA), as defined by Part 201, Environmental Remediation and Part 213, Leaking Underground Storage Tanks, of the Natural Resources and Environmental Protection Act, 1994 PA 451, as amended, for the purpose of establishing an exemption to liability pursuant to Section 20126(1)(c) and Section 21323a(1)(b) for a new owner or operator of property that is a facility as defined by Section 20101(1)(s) or Property as defined by Section 21303(d). The BEA report must be conducted either prior to or within 45 days after becoming the owner or operator, whichever is earliest. This form and the BEA report must be submitted prior to or within 6 months of becoming the owner or operator whichever is earliest. A separate BEA is required for each legal entity that is or will be a new owner or operator of the property. To maintain the exemption to liability, the owner and operator must also disclose the BEA to any subsequent purchaser or transferee before conveying interest in the property pursuant to Section 20126(1)(c) and Section 21323a(1)(b). An owner or operator of a facility or Property also has due care obligations under Section 20107a and Section 21304c with response to any existing contamination to prevent unacceptable exposure; prevent exacerbation; take reasonable precautions; provide reasonable cooperation, assistance, and access to authorized persons taking response activities at the property; comply with land use restrictions associated with response activities; and not impede the effectiveness of response activities implemented at the property. Documentation of due care evaluations and conducted response activities need to be available, but not submitted, to the MDEQ within 8 months of becoming the owner or operator of a facility and/or Property.

	Property.						
	Section A: Legal Entity Information						
	Name of legal entity that does or will own or operate the		Contact for BEA questions if different from submitter				
	property: Pinecrest Holdings, LLC		Name & Title: Mr. Jamie Antoniewicz, PE - Project Engineer				
	Address: 47 Oxford Road	1	Company: PM Environmental, Inc.				
	City: Grosse Pointe State: MI Zip: 48236	l	Address: 4080 West Eleven Mile Ro	n a d			
	Contact person (Name & Title): Greg Cooksey - Authorized Representative			o: 48072			
	Telephone: 313-378-1446 E-Mail: GCOOKSEY@CGEMERSON.C	COM	Telephone: 248.336.9988 E-Mail: ANT				
	Section B: Property Information						
a serve	Street Address of Property: 1600 West Eight Mile Road		County: Oakland	maga garang paggan dapan salam damakan damaka salah makan da maka salah maka salah salah salah salah salah sal			
والميشود	City: Ferndale State: MI Zip: 48220		City/Village/Township: Ferndale				
	Property Tax ID (include all applicable IDs): 25-33-451-003; 25-33-451-005		Town: 1N Range: 11E Se	ection: 33			
	Address according to tax records, if different than above (inc	clude	Quarter: SE Quarter-Quarter: S	W/NW			
	all applicable addresses):	ļ	Decimal Degrees Latitude: 42.4480				
			Decimal Degrees Longitude: -83.14	190			
	City: State: Zip:		Reference point for latitude and longitude:				
	Status of submitter relative to the property (check all that app	(viq	Center of site Main/front door Front gate/main entrance Other				
	Former Current Prospective	,	Trongatormain ordanos 🗀 otrior 🗀				
	Owner 🔲 🗵		Collection method:	577			
	Operator		Survey GPS Interpolati	on 🔯			
1	Section C: Source of contamination at the property (check all t						
	Facility regulated pursuant to Part 201, other source, or sour Part 201 Site ID, if known:	ice unk	MOWII	\boxtimes			
	Property - Leaking Underground Storage Tank regulated pur	rsuant i	to Part 213				
	Part 211/213 Facility ID, if known:						
i	Oil or gas production and development regulated pursuant to	o Part 6	615 or 625				
	Licensed landfill regulated pursuant to Part 115						
į	Licensed hazardous waste treatment, storage, or disposal fa	egulated pursuant to Part 111					
ı	Section D: Applicable Dates (provide date for all that are relevant): Date All Appropriate Inquiry (AAI) Report or Phase I Environmental Assessment Report completed: 06/16/2016						
-		Assessment Report Completed.	06/16/2016 06/1 9 /2016				
	Date Baseline Environmental Assessment Report conducted		05/04/2016				
-	Date submitter first became the owner:		00/04/2010				
ı	Date submitter first became the operator (if prior to ownership):						
	Anticipated date of becoming the owner for prospective owners:						
	Anticipated date of becoming the operator for prospective operators:						
	If former owner or operator of this property, prior dates of bei	ing the	owner or operator:				
	RECEIVED - MDEQ		FOR 400	T (00/004E)			
	1		EQP 4028	5 (09/2015)			

AUG 17 2016

RRD - SEMI DISTRICT

Sec	ection E: Check the appropriate response to each of the following question	ns:	IES NO	1240 E.O. 2009					
1.	Is the property at which the BEA was conducted a "facility" as defined Property as defined by Section 21303(d)?	d by Section 20101(1)(s) or a	\boxtimes						
2.	21302(1)(b)?								
3.	Was the BEA, including the sampling, conducted either prior to or within 45 days of the date of becoming the owner, operator, or of foreclosure, whichever is earliest?								
4.	Is this BEA being submitted to the department within 6 months of the or operator, or foreclosing?	submitter first becoming the owner	\boxtimes						
5.	5. Does the BEA provide sufficient rationale to demonstrate that the data is reliable and relevant to define conditions at the property at the time of purchase, occupancy, or foreclosure, even if the BEA relies on studies of data prepared by others or conducted for other purposes?								
6.	. Does this BEA contain the legal description of the property addresse	d by the BEA?	\boxtimes						
7.	7. Does this BEA contain the environmental analytical results, a scaled map showing the sample locations, and the basis for the determination that the property is a facility as defined by Section 20101(1)(s) or the basis for the determination that the property is a Property as defined by Section 21303(d)?								
L	ection F: Environmental Consultant Signature:								
cer	I certify to the best of my knowledge and belief, that this BEA and all related materials are true, accurate, and complete. I certify that the property is a facility as defined by Section 20101(1)(s) or a Property as defined by Section 21303(d) and have provided the sampling and analyses that support that determination. I certify that any exceptions to, or deletions from, the All Appropriate Inquiry Rule are described in Section 1 of the BEA report.								
Sig	ignature: Date	e 8/12/2016	one nizograpi pilot v z v v z-ezocz	– su sees verkii vare—essa esirki					
Dri	rinted Name: Jamie Antoniewicz								
1	Company: PM Environmental, Inc.								
i i	Mailing Address: 4080 West Eleven Mile Road City: Berkley	State: MI Zip: 48072							
Те	elephone: 248.336.9988 E-Mail: ANTONIE	EWICZ@PMENV.COM							
L									
Se	ection G: Legal Entity Signature: Vith my signature below, I certify that to the best of my knowledge and b	pelief this BFA and all related materi	als are tr	ле.					
201	courate, and complete			,					
aci	Signature: Date: 8/11/16								
Sig	Signature: Date:	111/10							
	(Person legally authorized to bind the legal entity)								
•	Printed Name: Greg Cooksey								
Tit	itle and Relationship of signatory to submitter: Authorized representativ								
Ad	ddress: 47 Oxford Road City: Grosse Pointe	State: MI Zip	: 48236						
Te	elephone: 313-378-1446 E-Mail: GCOOKSEY@CGI	EMERSON.COM							

Submit the BEA report and this form to the MDEQ District Office for the county in which the property is located. A office map is located at www.michigan.gov/degrrd.

This CD was converted as received –

Illegible/difficult to view pages/tables/figures

Duplicate/out of order/missing pages

Environmental & Engineering Services Nationwide

BASELINE ENVIRONMENTAL

1600 West 8 Mile Road | Ferndale, Michigan PM Project Number 01-6124-1-0001

Prepared for:

Pinecrest Holdings, LLC 47 Oxford Road Grosse Pointe, Michigan 48236

ASSESSMENT

Prepared by:

PM Environmental, Inc. 4080 West 11 Mile Road Berkley, Michigan 48072

ENVIRONMENTAL SERVICES

BUILDING ARCHITECTURE, ENGINEERING & SCIENCE

INDUSTRIAL HYGIENE SERVICES

BROWNFIELDS & ECONOMIC INCENTIVES CONSULTING

Know Your Risk. Take Control. Work with the Experts.

www.pmenv.com

Detroit 607 Shelby, Suite 650 Detroit, MI 48226

f: 877.884.6775 t: 313.324.8172 Metro Detroit 4080 W. 11 Mile Road Berkley, MI 48072

f: 877.884.6775 t: 248.336.9988 Lansing 3340 Ranger Road Lansing, MI 48906 f: 877.884.6775 t: 517.321.3331 Grand Rapids 560 5th Street NW, Suite 301 Grand Rapids, MI 49504

f: 877.884.6775 t: 616.285.8857

June 17, 2016

District Supervisor Michigan Department of Environmental Quality Southeast Michigan District Office 27700 Donald Court Warren, Michigan 48092

RE: Baseline Environmental Assessment for the

Former Ethyl Corp Property Located at

1600 West Eight Mile Road, Ferndale, Michigan Parcel ID: 25-33-451-003 and 25-33-451-005

PM Environmental, Inc. Project No. 01-6124-1-0001

Dear District Supervisor:

Enclosed is a copy of the Baseline Environmental Assessment prepared for the above referenced subject property in accordance with Section 20126(1)(c) of Part 201, Environmental Remediation, of the Natural Resources and Environmental Protection Act (NREPA), P.A. 451 of 1994 (Part 201), as amended.

If you have any questions regarding the information in this report, please contact us at 800-313-2966.

Sincerely,

PM ENVIRONMENTAL, INC.

Jamie Antoniewicz, P.E.

Project Engineer

J. Adam Patton, CHMM

Manager of Site Investigation Services

Enclosure

Detroit 607 Shelby, Suite 650 Detroit, MI 48226

f: 877.884.6775 t: 313.324.8172 Metro Detroit 4080 W. 11 Mile Road Berkley, MI 48072

f: 877.884.6775 t: 248.336.9988 Lansing 3340 Ranger Road Lansing, MI 48906 f: 877.884.6775 t: 517.321.3331 Grand Rapids 560 5th Street NW, Suite 301 Grand Rapids, MI 49504 f: 877.884.6775

t: 616.285.8857

June 17, 2016

Mr. Greg Cooksey Pinecrest Holdings, LLC 47 Oxford Road Grosse Pointe, Michigan 48236

RE: Baseline Environmental Assessment for the Former Ethyl Corp Property Located at 1600 West Eight Mile Road, Ferndale, Michigan Parcel ID: 25-33-451-003 and 25-33-451-005

PM Environmental, Inc. Project No. 01-6124-1-0001

Dear Mr. Cooksey:

Enclosed is a copy of the above-referenced document prepared in accordance with Section 20126(1)(c) of Part 201, Environmental Remediation, of the Natural Resources and Environmental Protection Act (NREPA), P.A. 451 of 1994 (Part 201), as amended.

THIS BASELINE ENVIRONMENTAL ASSESSMENT WAS PERFORMED FOR THE EXCLUSIVE USE OF <u>PINECREST HOLDINGS</u>, <u>LLC</u>, WHO MAY RELY ON THE REPORT'S CONTENTS.

If you have any questions regarding the information in this report, please contact our office at 800-313-2966.

Sincerely,

PM ENVIRONMENTAL, INC.

Jamie Antoniewicz, P.E.

Project Engineer

J. Adam Patton, CHMM

Manager of Site Investigation Services

Enclosure

TABLE OF CONTENTS

1.0		NTRODU	JCTION AND DISCUSSION	1
	1.1	Owner/	Operator Information	1
	1.2	Intende	d Use of the Subject Property	1
	1.3	Summa	ry of All Appropriate Inquiry Phase I Environmental Assessment	1
			Phase I ESA Exceptions or Deletions	
			Phase I ESA Data Gaps	
	1.4	Summa	ry of Previous Subsurface Site Investigations	3
			016 Subsurface Site Investigation	
		1.5.1	Geophysical Investigation	6
		1.5.2	Subsurface Investigation	6
		1.5.3	Investigation Techniques and QA/QC Procedures	11
	1.6	Geolog	y and Hydrogeology	12
2.0	L	OCATIO	ON OF CONTAMINATED MEDIA ON THE SUBJECT PROPERTY	12
	2.1	Soil Ana	alytical Results	12
	2.2	Ground	water Analytical Results	13
	2.3	Subject	Property Facility Status	14
3.0	F	ROPER	TY INFORMATION	14
	3.1	Legal D	escription of Subject Property	14
			Subject Property	
	3.3	Subject	Location and Analytical Summary Maps	15
	3.4	Subject	Property Location Map	15
	3.5	Subject	Property Address	15
	3.6	Subject	Spatial Data	15
4.0	F	ACILITY	STATUS OF SUBJECT PROPERTY	15
	4.1	Summa	ıry Data Tables	15
	4.2	Laborat	ory Reports and Chain of Custody Documentation	15
5.0			CATION OF BEA AUTHOR	
6.0	P	AI REP	ORT OR ASTM PHASE I ESA	16
7.0	F	REFERE	NCES	17

FIGURES

Figure 1:

9	roporty viernity map
Figure 2:	Generalized Diagram of the Subject Property and Adjoining Properties with GPR
	Survey Area
Figure 3:	Detail of Former Northern Buildings
Figure 4:	Datail of Former Southern Ruildings

Figure 4: Detail of Former Southern Buildings

Property Vicinity Map

Soil Boring/Temporary Monitoring Well Location Map with Northern Soil Figure 5A:

Analytical Results

Soil Boring/Temporary Monitoring Well Location Map with Southern Soil Figure 5B:

Analytical Results

Soil Boring/Temporary Monitoring Well Location Map with Groundwater Figure 6:

Analytical Results

TABLES

Table 1A:	Summary of 2015/2016 Soil Analytical Results: VOCs
Table 1B:	Summary of 2012 Soil Analytical Results: VOCs
Table 2A:	Summary of 2015/2016 Soil Analytical Results: SVOCs
Table 2B:	Summary of 2012 Soil Analytical Results: SVOCs
Table 3A:	Summary of 2015/2016 Soil Analytical Results: PCBs and Metals
Table 3B:	Summary of 2015 Soil Analytical Results: PCBs and Metals
Table 4A:	Summary of 2015/2016 Groundwater Analytical Results: VOCs
Table 4B:	Summary of 2015/2016 Groundwater Analytical Results: SVOCs and Metals
Table 5:	Summary of 2012 Groundwater Analytical Results: VOCs, SVOCs, and Metals

APPENDICES

Appendix A: Phase I ESA Update, June 16, 2016, PM

Appendix B: Soil Boring Logs

Appendix C: Laboratory Analytical Reports

Appendix D: Assessing Information

Appendix E: Professional Qualification Statements

1.0 INTRODUCTION AND DISCUSSION

PM Environmental, Inc. (PM) completed a Baseline Environmental Assessment (BEA) for the former Ethyl Corp property (Parcel ID: 25-33-451-003 and 25-33-451-005) located at 1600 West Eight Mile Road, Ferndale, Oakland County, Michigan 48220 (hereafter referred to as the "subject property"; Figure 1). The subject property consists of two parcels totaling 33.93 acres. The property is located northeast of the intersection of West Eight Mile Road and Pinecrest Drive in Ferndale, Michigan. The property generally consists of vacant land with the exception of a guard shack and paved parking areas and roads related to the former buildings. The entire property that was formerly develop is fneced and secrutered preventing site access.

Standard and other historical sources documented that the subject property was developed as a research and development facility for chemical additives for gasoline in 1937 with buildings constructed at various times between the 1930s and 1980s. All of the buildings were demolished, except the guard house (Building Q) after 1970, with the majority of the buildings demolished between 2012 and 2013. Historical operations include the research and development facility from the 1930s until the 1980s, followed by manufacturing operations from the 1980s until vacated in 2012 to 2013.

1.1 Owner/Operator Information

Pinecrest Holdings, LLC, 47 Oxford Road, Grosse Pointe, Michigan 48236, purchased the property on May 4, 2016.

1.2 Intended Use of the Subject Property

Pinecrest Holdings, LLC intends to redevelop the property with Residential use on the northern portion and commercial use on the southern portion.

1.3 Summary of All Appropriate Inquiry Phase I Environmental Assessment

PM completed a Phase I Environmental Site Assessment (ESA) update, dated June 16, 2016, in conformance with the scope and limitations of ASTM Practice E 1527-13 (i.e., the 'ASTM Standard'). A copy of the June 2016 Phase I ESA update, including photographs of the subject property, is included in Appendix A.

The following recognized environmental condition (REC) was identified in PM's June 2016 Phase I ESA update:

- The subject property was occupied by a research and development facility for chemical additives for gasoline from the 1930s until the 1980s, followed by manufacturing operations from the 1980s until vacated in 2012. Based upon review of the previous subsurface investigations, soil and groundwater contamination is present which exceeds the current Part 201 Residential and Nonresidential cleanup criteria. Based on these analytical results, the subject property would be classified as a "facility," as defined by Part 201 of P.A. 451 of the Michigan Natural Resources Environmental Protection Act (NREPA), as amended.
- Review of available information documents that laboratory wastes, residues, glassware, foundry sands, and containers were buried in the northern, central, and eastern portions of the subject property. The previous site investigations were not adequate to assess

these former disposal areas. Review of Health Department records documents that 11 disposal pits were located in the vicinity of former Building AE (located in the northwestern portion of the property), the majority of which were located east of the building. Unmapped disposal areas were also reported to be present north of former Building AI and in the vicinity of the eastern parking lot from the 1930s through the 1980s. Additionally, review of aerial photographs document ground disturbance throughout the northern and/or central portion of the subject property during the 1930s through the 1970s. The previous site investigations were limited to two small areas north and northeast of former Building AE and in the vicinity of the eastern parking area. Contamination has been identified above Part 201 cleanup criteria in the assessed portions of the disposal areas. Additionally, based on the operations of the site and the information provided, the potential exists for drums or potential explosive or reactive materials to have been buried. Based on this information, the potential exists for additional contamination and/or potentially hazardous materials may be present below the subsurface.

- The subject property formerly contained at least 78 underground storage tanks (USTs). The majority of the USTs were located within three UST farms, located west of former Building R, west of former Building B, and north of former Building H (in between former Buildings B and C). Additional USTs were located north of former Building D, south of former Building AE, and in the vicinity of former Buildings O, M, E, and F. The previous site investigations were not adequate to assess the USTs, with the exception of the two former 15,000-gallon gasoline/diesel USTs which were located west of former Building C and the 1.000-gallon fuel oil UST located south of former Building AE. Free product (i.e. non-aqueous phase liquid (NAPL)) was found in a monitoring well located in the vicinity of the former 10,000-gallon heating oil USTs located in the vicinity of former Building D. One soil sample was collected west of former Building B to assess eight former USTs and gasoline dispensing operations; no soil and/or groundwater samples were collected to assess the USTs which were located in the central portion of the property including the UST farm formerly located west of former Building R; 54 USTs were located north of former Building H; however, only a few soil and groundwater samples were collected in this area. Based on the long time period of operations and the number of USTs identified, the potential exists for additional USTs to be present. Records reviewed document that heating oil USTs were not registered and/or thoroughly documented. Additionally, USTs outside of the three main UST farms were not well documented as to the location. The previous site investigations did not include ground penetrating radar (GPR) survey. Based on this information, the potential exists for additional contamination and/or for orphan USTs to be present.
- Historical operations included blending of fuels, foundry operations, service operations, maintenance operations, chemical storage, incinerator, and laboratory testing from the 1930s until the 1980s followed by manufacturing operations. The previous site investigations were not adequate to assess the historical operations. No soil and/or groundwater sampling was conducted within the building footprints, former chemical storage areas, oil sumps, foundry operations, machine shop operations, fuel blending operations, service garage, and maintenance operations were also not adequately assessed. Therefore, the potential exists for additional contamination to be present.

The following adjoining and/or nearby RECs were identified:

- Ground disturbance was observed on the north adjoining property, identified as 881
 Pinecrest Drive, during the 1940s and 1950s, which may have been part of the subject
 property disposal practices. Contamination has been identified with the disposal
 operations that occurred on the subject property during this time period. Therefore, the
 potential exists for contamination to be present and to be migrating onto the subject
 property.
- The west adjoining property, identified as 2000 West Eight Mile Road, is a BEA site. Review of available Michigan Department of Environmental Quality (MDEQ) records documents that one soil boring was advanced on the property in the northeastern parking area. Low levels of polynuclear aromatic compounds (PNAs) were detected in the soil. The property was historically occupied by printing operations from the 1950s until the 2000s. Printing operations generally consist of the use of hazardous substances and/or petroleum based products. Based on the relative close proximity (within 50 feet) and the groundwater flow direction towards the property, the potential exists for a release to have occurred on this property and to have migrated onto the subject property.

1.3.1 Phase I ESA Exceptions or Deletions

There were no exceptions or deletions from the Federal All Appropriate Inquiry Rule under 40 CFR 312, or the ASTM Standard during the completion of PM's June 2016 Phase I ESA and no special terms or conditions applied to the preparation of the Phase I ESA.

1.3.2 Phase I ESA Data Gaps

PM did not identify any significant data gaps during the completion of the June 2016 Phase I ESA.

1.4 Summary of Previous Subsurface Site Investigations

PM reviewed the following previous environmental reports for the subject property. Relevant portions of the reports are included in Appendix A.

Name of Report	Date of Report	Company that Prepared Report
Health Department Correspondence	1985-1986	Between Ethyl Corporation and Oakland County Health Division
Leaking Underground Storage Tank (LUST) Closure Report	4-3-1997	Swanson Environmental
Phase I ESA	11-27-2012	RJN Environmental (RJN)
BEA	12-2-2012	RJN Environmental
Phase II ESA	12-18-2012	RJN Environmental
Phase II ESA	11-1-2013	RJN Environmental
Phase I ESA	11-3-2015	PM

Health Department records document that Ethyl Corporation had offered to gift the subject property to Oakland County. The County Health Department performed an initial assessment of the property which included review of available information and a limited environmental study. The areas of concern identified were the former disposal areas and former UST basins. A magnetometer survey was completed on a 50 foot grid in portions of the northern, eastern, and central portions where dumping had reportedly occurred. Anomalies were detected. Limited groundwater samples were collected in the vicinity of former Building AE (located on the northwestern portion of the property). Toluene, tetrahydrofuran, and chloroform were detected in the groundwater; however, the results provided were estimations based on chromatography. The final results were not provided and additional work was not completed because Oakland County determined not to accept the property.

The subject property is a closed LUST site with one release reported in 1996 and unrestricted Tier I LUST closure granted in 1998. The release was associated with the former 15,000-gallon diesel/gasoline USTs installed in 1988. Approximately 90 cubic yards of soil was removed from the property. Methyl-tert-butyl-ether (MTBE); 1,2,4-trimethylbenzene (TMB); ethylbenzene; and ethylbenzene were detected in soil and/or groundwater above MDEQ Part 213 Drinking Water (DW); Drinking Water Protection (DWP); Groundwater Surface Water Interface (GSI); and/or Groundwater Surface Water Interface Protection (GSIP) Risk Based Screening Levels (RBSLs).

A Phase I ESA was performed in 2012. At the time of the Phase I ESA the property was vacant; however, the majority of the buildings were present. The Phase I ESA summarized the previous site investigations, including some that were not received by PM during the time constraints of this report, that were completed between 1986 and 1998. According to the Phase I ESA, test pits were completed in 1986 in the vicinity of the magnetometer survey readings. No buried drums were reportedly encountered; however, fill material consisting of bricks, concrete, and asphalt was observed in these areas. Soil gas samples were also reportedly collected in 1986 in the former UST area; however, results and location of the samples was not provided.

The 2012 Phase I ESA documented that a release of fuel oil was observed during the removal of the two 10,000-gallon fuel oil USTs. Approximately 240 cubic yards of soil were removed at that time; however, contaminated soil remained in place due to the location of the building and utilities. During subsequent investigations to delineate the fuel oil plume, fuel oil was discovered in one of the monitoring wells. A 1,000-gallon heating oil additive UST was found and removed in 1995, which was located south of the 10,000-gallon fuel oil USTs and was believed to be the source of the fuel oil in the groundwater wells. The 2012 Phase I ESA documents that the previous site investigations indicated volatile organic compounds (VOCs) were detected in the drinking water and soils of the subject property; however, no analytical results were provided. The Phase I ESA identified RECs which are summarized below.

- The subject property was historically occupied by Ethyl Corporation. Operations
 included the use of emissions laboratory, engine research, fuel blending,
 maintenance shops, and bulk chemical storage. These operations generally use
 hazardous substances and/or petroleum based products. The detail of the general
 storage, use and disposal of these chemicals is unknown.
- The subject property is listed as a former UST site, a closed LUST site, a former Hazardous Waste Site, a Resource Recovery and Conservations Act (RCRA)-Conditionally Exempt Small Quantity Generator (CESQG), a RCRA Corrective Action Site (CORRACTS), and a CERC-No Further Action Planned (NFRAP).

- There are three historical disposal areas identified on the subject property, located near the former building AE, north of former Buildings AB and AF, and the northern portion of the eastern parking area. The disposal areas were used to dispose of laboratory wastes including glassware and residues as well as reactive sodium compounds at various times between the 1930s and 1980s.
- Historical groundwater investigations have identified VOCs. The source of this
 plume has been reported to have been from the historical disposal pit located
 northwest of the former Building AE.
- Historical reports identified 72 USTs formerly located on the subject property. The bulk of the USTs were located in a tank farm located between the former Buildings B and C. Additionally, a single heating oil UST was located north of Building D and south of Building AE. A review of government records indicates the USTs have been removed. A release was reported in 1996 associated with the removal of a former gasoline UST, which was granted closure in 1998. The Closure report was not available. Due to lack of confirmation sampling data, the USTs have been identified as a REC.
- Former Building H was used for fuel blending and piped to Building C for engine testing. There was also a remote fill station west of Building B. The former piping areas is considered a REC.
- Review of historical reports documents releases of fuel oil from a former UST located north of Building D. Free product (i.e. NAPL) was recovered. Contamination reportedly remains.
- Historical reports document chemical storage in former Buildings I, L, V, and AF. In addition, former Building AN was stated to be utilized for casting aluminum. Additionally, a drum storage pad was located in the central portion of the property.
- A historical record documented a small amount of nuclear source material was located in the soundproofing room of former Building C. The US Nuclear Regulatory Commission terminated the license prior to 1985; however, indicated that there was no clear documentation to terminating the license. No additional information was available.

A Phase II was completed in 2012 to assess the above identified RECs. A total of 30 soil borings (SB-1 through SB-30) were advanced on the subject property and four hand augers (HA-1 through HA-4) were advanced in select areas of former disposal, select UST basins, and some select chemical storage areas. It should be noted that none of the borings were advanced within the footprint of the former buildings. Additionally, 10 existing monitoring wells (MW7, MW9, MW10, MW11, MW12, MW-A, MW-D, MW-E, MW-G. MW-H) were sampled.

The soil and groundwater samples were analyzed for VOCs, PNAs, semi-volatile organic compounds (SVOCs), polychlorinated biphenyls (PCBs), and metals (arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and/or zinc), or some combination thereof. During the sampling in the vicinity of former fuel oil USTs at Building D, six inches of fuel oil was observed in monitoring well MVV-C. Analytical results for soil indicated that various VOCs, PNAs, and metals were detected above Part 201 DWP and GSIP cleanup criteria. Additionally,

arsenic exceeded the Part 201 Residential Direct Contact (DC) cleanup criteria and phenanthrene exceeded Infinite Source Volatile Soil Inhalation Criteria (VSIC) and Finite VSIC cleanup criteria. No PCBs were detected. Analytical results for groundwater indicated that various VOCs and lead exceeded DW cleanup criteria. Based on these results, a BEA was completed.

A subsequent Phase II ESA was reportedly performed in which 15 soil borings and four hand borings were advanced and five of the monitoring wells were sampled; however, the information provided was from the previously discussed 2012 sampling event. The report recommended excavation of impacted soils within the known disposal areas.

PM completed a Phase I ESA in November 2015 that identified the facility status, historically identified dumping and disposal, potential for orphan USTs and/or a release, historical testing, research, and manufacturing operations, and the potential for migration form the north and west as RECs. The scope of work outlined below was conducted to evaluated the RECs.

1.5 2015/2016 Subsurface Site Investigation

Prior to the commencement of field activities, MISSDIG, a utility locating service, was contacted to locate utilities on or adjacent to the subject property. Utilities were marked by the respective utility companies where they entered or were located adjacent to the subject property.

1.5.1 Geophysical Investigation

Between December 7 and 9, 2015, PM completed a GPR survey on the subject property to investigate the presence of potential orphan USTs.

Four anomalies suggestive of orphan USTs and one anomaly suggestive of an orphan drum were identified during the GPR survey. The anomalies are located in the central portion of the property and southern portion of the property. Hand auger soil borings were advanced near the center of the three shallower anomalies. Further evaluation of the deeper anomaly was limited by the depth of the available equipment. Refusal was encountered and a commercial metal detector (Schonstedt) was used to verify that two out of the three anomalies were metallic in nature.

1.5.2 Subsurface Investigation

On December 7 and 8, 2015, PM completed a scope of work consisting of the advancement of 21 soil borings (SB-1 through SB-21), installation of 16 temporary monitoring wells (TMW-3 through TMW-14, TMW-16, and TMW through TMW-20), and sampling four existing monitoring wells (MW-7, MW-10, MW-11, and MW-12). A total of 19 soil and 20 groundwater samples were analyzed for VOCs, SVOCs, PCBs, and metals (arsenic, barium, cadmium, chromium, copper, lead, mercury, selenium, silver, and zinc), or some combination thereof.

On March 1, 2016, PM completed a scope of work consisting of the advancement of 13 soil borings (SB-3R, SB-8R, SB-22 through SB-32), installation of 11 temporary monitoring wells (TMW-3R, TMW-8R, TMW-22 through TMW-27 and TMW-30 through TMW-32), and the collection of groundwater from two existing monitoring wells (MW-9 and MW-10). Samples were analyzed for VOCs, PNAs, PCBs, arsenic, lead, and mercury, or some combination thereof.

The table below summarizes the Phase II ESA activities including total boring depth, objective of the soil borings, and sample justification.

DESCRIPTION OF SOIL BORING/TEMPORARY MONITORING WELL SAMPLING LOCATIONS

Location and Total Depth (feet bgs)	Soil Sample Depth (feet bgs)	TMW Screen Depth and [DTW] (feet bgs)	Analysis	Objectives	Sample Selection (justification)
SB-1 (20.0)	5.0-6.0	NA	VOCs, SVOCs, PCBs, metals	Assess disposal and/or fill material on the northern portion of the property	Soil: Sample collected from interval with observed brick debris. GW: Not encountered.
SB-2 (15.0)	3.0-4.0	NA	VOCs, SVOCs, PCBs, metals	Assess disposal and/or fill material on the northern portion of the property	Soil: Sand/clay interface sample collected based on the lack of field evidence of contamination. GW: Not encountered.
SB/TMW-3 (15.0)	NA	9.0-14.0 [9.27]	VOCs, SVOCs, metals	Assess disposal and/or fill material on the northern portion of the property	Soil: A soil sample was not collected based on the lack of field evidence of contamination or debris. GW: Sampled.
SB/TMW-3R (20.0)	3.0-4.0	7.0-12.0 [8.80]	VOCs, SVOCs, metals	Resample the area around SB-3	Soil: Soil sample collected based on the observed brick debris. GW: Sampled.
SB/TMW-4 (15.0)	1.0-2.0	7.4-12.4 [8.52]	VOCs, SVOCs, PCBs, metals	Assess former drum storage area	Soil: Shallow sample collected based on the lack of field evidence of contamination. GW: Sampled.
SB/TMW-5 (15.0)	1.0-2.0	7.2-12.2 [8.38]	VOCs, SVOCs, PCBs, metals	Assess former drum storage area	Soil: Shallow sample collected based on the lack of field evidence of contamination in unsaturated soils. GW: Sampled.
SB/TMW-6 (15.0)	NA	7.1-12.1 [7.99]	VOCs, SVOCs, metals	Assess former drum storage area	Soil: A soil sample was not analyzed based on the lack of field evidence of contamination in unsaturated soils. GW: Sampled.
SB/TMW-7 (15.0)	8.0-9.0	7.4-12.4 [8.96]	VOCs, SVOCs, PCBs, metals	Assess former vehicle fueling area	Soil: Sample collected above the saturated zone based on the lack of field evidence of contamination. GW: Sampled.
SB/TMW-8 (15.0)	1.0-2.0	9.8-14.8 [11.04]	VOCs, SVOCs, PCBs, metals	Assess former chemical research area	Soil: Sample collected from the interval with the highest PID reading (6.0 ppm). GW: Sampled.

Location and Total Depth (feet bgs)	Soil Sample Depth (feet bgs)	TMW Screen Depth and [DTW] (feet bgs)	Analysis	Objectives	Sample Selection (justification)
SB/TMW-8R (15.0)	Not sampled	7.5-12.5 [9.78]	VOCs	Resample groundwater in the area of TMW-8	GW : Sampled.
SB/TMW-9 (15.0)	1.0-2.0	8.1-13.1 [9.34]	VOCs, SVOCs, PCBs, metals	Assess former chemical storage area	Soil: Shallow sample collected based on the lack of field evidence of contamination. GW: Sampled.
SB/TMW-10 (15.0)	1.0-2.0	7.0-12.0 [7.60]	VOCs, SVOCs, PCBs, metals	Assess former incinerator area	Soil: Shallow sample collected based on the lack of field evidence of contamination. GW: Sampled.
SB/TMW-11 (20.0)	1.0-2.0	8.9-13.9 [9.42]	VOCs, SVOCs, PCBs, metals	Assess former fuel storage area	Soil: Shallow sample collected based on the lack of field evidence of contamination in unsaturated soils. GW: Sampled.
SB/TMW-12 (15.0)	1.0-2.0	8.2-13.2 [9.67]	VOCs, SVOCs, PCBs, metals	Assess former maintenance and storage area	Soil: Shallow sample collected based on the lack of field evidence of contamination. GW: Sampled.
SB/TMW-13 (15.0)	1.0-2.0	9.3-14.3 [10.32]	VOCs, SVOCs, PCBs, metals	Assess former analytical laboratory	Soil: Shallow sample collected based on the lack of field evidence of contamination. GW: Sampled.
SB/TMW-14 (20.0)	1.0-2.0	8.1-13.1 [9.36]	VOCs, SVOCs, PCBs, metals	Assess former machine shop area	Soil: Shallow sample collected based on the lack of field evidence of contamination. GW: Sampled.
SB-15 (15.0)	1.0-2.0	NA	VOCs, SVOCs, PCBs, metals	Assess former machine shop area	Soil: Shallow sample collected based on the lack of field evidence of contamination. GW: Not sampled.
SB/TMW-16 (15.0)	1.0-2.0	8.9-13.9 [9.71]	VOCs, SVOCs, PCBs, metals	Assess former fuel blending area	Soil: Shallow sample collected based on the lack of field evidence of contamination. GW: Sampled.
SB-17 (15.0)	1.0-2.0	NA	VOCs, SVOCs, PCBs, metals	Assess former engine research area	Soil: Shallow sample collected based on the lack of field evidence of contamination. GW: Not sampled.

Location and Total Depth (feet bgs)	Soil Sample Depth (feet bgs)	TMW Screen Depth and [DTW] (feet bgs)	Analysis	Objectives	Sample Selection (justification)
SB/TMW-18 (15.0)	7.0-8.0	9.1-14.1 [10.50]	VOCs, SVOCs, PCBs, metals	Assess former engine research area	Soil: Sample collected from the interval with the highest PID reading (1.1 ppm). GW: Sampled.
SB/TMW-19 (20.0)	1.0-2.0	8.3-13.3 [9.94]	VOCs, SVOCs, PCBs, metals	Assess former chemical research area	Soil: Shallow sample collected based on the lack of field evidence of contamination. GW: Sampled.
SB/TMW-20 (15.0)	1.0-2.0	9.6-14.6 [10.93]	VOCs, SVOCs, PCBs, metals	Assess former chemical research area	Soil: Shallow sample collected based on the lack of field evidence of contamination. GW: Sampled.
SB-21 (15.0)	8.0-9.0	NA	VOCs, SVOCs, PCBs, metals	Assess disposal and/or fill material on the northern portion of the property	Soil: Clay/sand interface sample collected based on the lack of field evidence of contamination. GW: Not encountered.
SB/TMW-22 (15.0)	3.0-4.0	7.3-12.3 [8.68]	VOCs, PNAs, PCBs, metals	Further evaluate impact in the area of SB-3	Soil: Sample collected from an interval with observed debris. GW: Sampled.
SB/TMW-23 (15.0)	4.0-5.0	7.6-12.6 [7.98]	VOCs, PNAs, PCBs, metals	Further evaluate impact in the area of SB-3	Soil: Sample collected from an interval with observed debris. GW: Sampled.
SB/TMW-24 (15.0)	3.0-4.0	7.4-12.4 [8.64]	VOCs, PNAs, PCBs, metals	Further evaluate impact in the area of SB-3	Soil: Based on the lack of field evidence of contamination, a sample was collected from an interval consistent with soil impact in the area. GW: Sampled.
SB/TMW-25 (15.0)	4.0-5.0	4.6-9.6 [5.75]	VOCs, PNAs, PCBs, metals	Further evaluate the northern portion of the property for fill and/or contamination	Soil: Sample collected from an interval with observed debris. GW: Sampled.
SB/TMW-26 (15.0)	2.0-3.0	8.5-13.5 [10.22]	VOCs, PNAs, PCBs, metals	Further evaluate the northern portion of the property for fill and/or contamination	Soil: Shallow sample collected based on the lack of field evidence of contamination. GW: Sampled.

Location and Total Depth (feet bgs)	Soil Sample Depth (feet bgs)	TMW Screen Depth and [DTW] (feet bgs)	Analysis	Objectives	Sample Selection (justification)
SB/TMW-27 (15.0)	4.0-5.0	6.2-11.2 [7.24]	VOCs, PNAs, PCBs, metals	Further evaluate the northern portion of the property for fill and/or contamination	Soil: Sample collected from an interval with observed debris. GW: Sampled.
SB-28 (15.0)	3.0-4.0	NA	VOCs, PNAs, PCBs, metals	Further evaluate the northern portion of the property for fill and/or contamination	Soil: Sample collected from an interval with observed debris. GW: Not encountered.
SB-29 (15.0)	1.0-2.0	NA	VOCs, PNAs, PCBs, metals	Further evaluate the northern portion of the property for fill and/or contamination	Soil: Shallow sample collected based on the lack of field evidence of contamination. GW: Not encountered.
SB/TMW-30 (15.0)	8.0-9.0	9.2-14.2 [11.06]	VOCs, PNAs, PCBs	Evaluate the area where NAPL was previously identified	Soil: UST depth sample collected based on the lack of field evidence of contamination. GW: Sampled.
SB/TMW-31 (15.0)	7.0-8.0	8.8-13.8 [10.76]	VOCs, PNAs, PCBs	Evaluate the area where NAPL was previously identified	Soil: UST depth sample collected based on the lack of field evidence of contamination. GW: Sampled.
SB/TMW-32 (20.0)	8.0-9.0	8.6-13.6 [10.88]	VOCs, PNAs, PCBs	Evaluate the area where NAPL was previously identified	Soil: UST depth sample collected based on the lack of field evidence of contamination in the unsaturated soils. GW: Sampled.
MW-C (northern)	NA	[9.80]	VOCs	Collected current data from existing monitoring wells	GW: Sampled.
MW-7	NA	[13.58]	VOCs	Collected current data from existing monitoring wells	GW: Sampled.
MW-9	NA	[9.80]	VOCs	Collected current data from existing monitoring well	GW: Sampled.
MW-10	NA	[11.60]	VOCs	Collected current data from existing monitoring well	GW: Sampled.
MW-11	NA	Collected VOCs data from		Collected current data from existing monitoring wells	GW: Sampled.

Location and Total Depth (feet bgs)	Soil Sample Depth (feet bgs)	TMW Screen Depth and [DTW] (feet bgs)	Analysis	Objectives	Sample Selection (justification)
MW-12	NA	[11.41]	VOCs	Collected current data from existing monitoring wells	GW: Sampled.

bgs – below ground surface ppm – parts per million

PID – photoionization detector

GW - groundwater

m – parts per million DTW – depth to water

1.5.3 Investigation Techniques and QA/QC Procedures

The soil borings were advanced to the desired depth using a direct push drill rig and/or stainless steel hand auger. Soil sampling was performed for soil classification, verification of subsurface geologic conditions, and for investigating the potential and/or extent of soil and groundwater contamination at the subject property.

During drilling operations, the drilling equipment was cleaned to minimize the possibility of cross contamination. These procedures included cleaning equipment with a phosphate free solution (i.e., Alconox®) and rinsing with distilled water after each sample collection. Drilling and sampling equipment was also cleaned in this manner prior to initiating field activities.

Soils collected from discrete sample intervals were screened using a PID to determine if VOCs were present. Soil from specific depths was placed in plastic bags, sealed, and allowed to volatilize. The headspace within each bag was then monitored with the PID. The PID is able to detect trace levels of organic compounds in the air space within the plastic bag. The PID utilizes a 10.6 electron volts (eV) lamp. Soil samples were collected from the soil borings based upon the highest PID reading, visual/olfactory evidence, a change in geology, surficial soil, and/or directly above saturated soil.

Soil samples for VOC analysis were preserved with methanol, in accordance with United States Environmental Protection Agency (USEPA) method 5035. The soil samples were placed in appropriately labeled containers with Teflon lined lids and/or sanitized glass jars, placed in an ice packed cooler, and transported under chain of custody procedures for laboratory analysis within applicable holding times.

The temporary monitoring wells were installed to collect groundwater samples for chemical analysis. New well assemblies were used for the temporary wells, consisting of a 5-foot long, one-inch diameter, 0.010-inch slot, schedule 40, PVC screen and a 1-inch diameter PVC casing. After the screen for the well was set to the desired depth, natural sands were allowed to collapse around the well screen. The wells were developed using either a new disposable 0.9-inch diameter bailer or peristaltic pump equipped with new, chemically inert, 3/8-inch diameter polyethylene and silicon tubing. Well development was performed by purging until clear, turbid free groundwater was observed coming from the well.

Groundwater samples collected from the temporary or permanent monitoring wells were generally collected using low flow sampling methods and protocols using a peristaltic pump equipped with new, chemically inert, 3/8-inch diameter polyethylene and silicon tubing. The samples were collected into preserved vials or bottles or within unpreserved bottles or jars, as applicable for the analyte and/or method.

All samples collected were transported under chain of custody procedures for laboratory analysis within applicable holding times. Upon completion of the investigation, the temporary well materials were removed from the soil borings and the soil borings were abandoned by placing the soil cuttings back into the borehole, filling the void with bentonite chips, hydrating the chips, resurfacing and returning the area to its pre-drilling condition.

1.6 Geology and Hydrogeology

Based on review of soil boring logs, the soil stratigraphy generally consists of loose sand to a depth of at least 20.0 feet bgs. Clay, silty clay, or sandy clay was encountered on the northern portion of the property up to a depth of at least 20.0 feet bgs. Discontinuous fill and debris (brick, concrete, glass) was encountered on the northern portion of the property typically up to a depth of 5.0 feet bgs. Groundwater was generally encountered at depths of 8.0 to 11.0 feet bgs.

Soil boring logs depicting the soil stratigraphy and PID readings from the 2012 site investigation and PM's 2015 and 2016 site investigation are included in Appendix B.

2.0 LOCATION OF CONTAMINATED MEDIA ON THE SUBJECT PROPERTY

The analytical results for the samples collected during site investigation activities conducted by PM were compared with the MDEQ Generic Cleanup Criteria and Screening Levels as presented in Part 201 Rules 299.1 through 299.50, dated December 30, 2013 entitled "Cleanup Criteria Requirements for Response Activity", in accordance with Section 20120a(1) using the Residential and Nonresidential cleanup criteria.

The analytical results are summarized on Figures 5A, 5B, and 6 and in Tables 1 through 5. Laboratory analytical reports from RJN's 2012 and PM's 2015 and 2016 site investigations are included in Appendix C.

2.1 Soil Analytical Results

The table below summarizes the analytical results with target analyte concentrations in excess of Part 201 cleanup criteria in soil from site investigation activities completed by RJN in 2012 and PM in 2015 and 2016.

A full summary of the soil analytical results is presented on Figure 5A and 5B and in Tables 1A through 3B.

SUMMARY OF SOIL ANALYTICAL RESULTS

Sample	Depth			rt 201 clea criteria E				Compounds Exceeding
(Date)	(ft bgs)	DWP (R/NR)	GSIP	SVII (R/NR)	VSI (R/NR)	DC (R)	DC (NR)	Compounds Exceeding Part 201 cleanup criteria Arsenic Petroleum VOCs Petroleum VOCs, PNAs
SB-3 (10/2012)	10.0-12.0	YES	YES	No	No	YES	No	Arsenic
SB-5 (10/2012)	10.0-12.0	YES	YES	No	No	No	No	Petroleum VOCs
SB-7 (10/2012)	10.0-12.0	YES	YES	No	YES	No	No	Petroleum VOCs, PNAs
SB-25 (10/2012)	10.0-12.0	YES	YES	No	YES	No	No	Petroleum VOCs, PNAs

Sample	Depth				anup crite xceeded		Compounds Exceeding					
ID (Date)	(ft bgs)	DWP (R/NR)	GSIP	SVII (R/NR)	VSI (R/NR)	DC (R)	DC (NR)	Part 201 cleanup criteria				
SB-27 (10/2012)	10.0-12.0	YES	YES	No	No	No	No	Petroleum VOCs, PNAs				
SB-3R (03/2016)	3.0-4.0	No	YES	No	No	No	No	PNAs				
SB-11 (12/2015)	1.0-2.0	No	YES	No	No	No	No	Phenanthrene, mercury				
SB-14 (12/2015)	1.0-2.0	No	YES	No	No	No	No	Mercury				
SB-16 (12/2015)	1.0-2.0	No	YES	No	No	No	No	Mercury				
SB-17 (12/2015)	1.0-2.0	No	YES	No	No	YES	YES	PNAs, mercury				
SB-18 (12/2015)	7.0-8.0	No	YES	No	No	YES	No	PNAs, mercury				
SB-22 (03/2016)	3.0-4.0	No	YES	No	No	No	No	Mercury				
SB-25 (03/2016)	4.0-5.0	YES	YES	No	No	YES	No	TCE, arsenic				
SB-27 (03/2016)	4.0-5.0	YES	YES	No	YES	YES	YES	PNAs, arsenic, mercury				
SB-29 (03/2016)	1.0-2.0	YES	YES	No	No	No	No	Arsenic				

R - Residential

DWP - Drinking Water Protection

NR - Nonresidential

GSIP - Groundwater Surface Water Interface Protection

2.2 Groundwater Analytical Results

The table below summarizes the analytical results with target analyte concentrations in excess of Part 201 cleanup criteria in groundwater from site investigation activities completed by RJN in 2012 and PM in 2015 and 2016.

Groundwater analytical results are presented on Figure 6 and in Tables 4A, 4B, and 5.

SUMMARY OF GROUNDWATER ANALYTICAL RESULTS

Sample ID	Depth to Water	(cle		1 cleanup eria Excee	Compounds Exceeding		
(Date)	(ft bgs)	DW (R/NR)	GSI	VISL (R)	VISL (NR)	GVII (R/NR)	Part 201 cleanup criteria
MW7 (10/2012)	Not reported	YES	No	No	No	No	1,2-Dichloroethane, lead
MW9 (10/2012)	Not reported	YES	No	YES	No	No	TCE
MW10 (10/2012)	Not reported	YES	No	YES	No	No	TCE
MW7 (10/2012)	Not reported	YES	No	No	No	No	1,2-Dichloroethane
TMW-3 (12/2015)	9.27	YES	YES	No	No	No	Chlorobenzene, arsenic

Sample ID	Depth to Water	(cle		1 cleanup eria Excee	Compounds Exceeding		
(Date)	(ft bgs)	DW (R/NR)	GSI	VISL (R)	VISL (NR)	GVII (R/NR)	Part 201 cleanup criteria
TMW-8 (12/2015)	11.04	No	YES	NA	No	No	1,2-Dichlorobenzene
TMW-8R (03/2016)	9.78	No	YES	No	No	No	1,2-Dichlorobenzene
TMW-16 (12/2015)	9.71	YES	No	No	No	No	PCE
TMW-18 (12/2015)	10.50	YES	No	NA	No	No	PCE
TMW-24 (03/2016)	8.64	YES	YES	No	No	No	Arsenic
TMW-26 (03/2016)	10.22	YES	No	NA	No	No	1,1,2-TCA, TCE
TMW-32 (03/2016)	10.88	No	YES	NA	No	No	Chlorobenzene, PNAs
MW-B/11 (12/2015)	9.8	YES	No	No	No	No	1,2-Dichloroethane
MW-10 (03/2016)	11.60	YES	No	NA	No	No	TCE

R – Residential DW – Drinking Water

NR – Nonresidential GSI – Groundwater Surface Water Interface TCE - trichloroethylene VISL – Vapor Intrusion Screening Level

TCA - trichloroethane GVII - Groundwater Volatilization to Indoor Air Inhalation

Mobile NAPL was historically identified in a monitoring well (MW-C) in the area of TMW-32. Due to the absence of the monitoring well, soils borings were advanced and temporary monitoring wells were installed in 2016 to evaluate the area. Although mobile NAPL was not observed in the temporary monitoring wells, soil conditions appeared consistent with the presense of residual fuel oil NAPL.

2.3 Subject Property Facility Status

A location where a hazardous substance is present in excess of the concentrations, which satisfy the requirements of subsection 20120a(1)(a) or (17), is a facility pursuant to Part 201. Section 20120a(1)(a) requirements are the cleanup criteria for unrestricted residential usage.

Contaminant concentrations identified on the subject property indicate exceedances to the Part 201 Residential and Nonresidential DWP/DW, GSIP/GSI, DC, and VSI cleanup criteria, and Residential groundwater VISLs. Therefore, the subject property is a <u>facility</u> under Part 201 of P.A. 451, as amended, and the rules promulgated thereunder.

3.0 PROPERTY INFORMATION

3.1 Legal Description of Subject Property

A copy of the legal description is included in Appendix D as part of the assessing information.

3.2 Map of Subject Property

Refer to Figure 1, Property Location Map; and Figure 2, Generalized Diagram of the Subject Property and Surrounding Area, which depicts the property/parcel boundaries.

3.3 Subject Location and Analytical Summary Maps

Figures 5A, 5B, and 6 provide scaled maps of the subject property with site structures and sampling locations with analytical results.

3.4 Subject Property Location Map

Figures 1 and 2 provide scaled area maps depicting the subject property location in relation to the surrounding area.

3.5 Subject Property Address

As indicated in Section 1.0, the subject property (Parcel ID: 25-33-451-003 and 25-33-451-005) is located at 1600 West Eight Mile Road, Ferndale, Oakland County, Michigan 48220.

3.6 Subject Spatial Data

As depicted in Figure 1, the subject property is located in township one North (T.1N), range 11 East (R.11E), and section 33, southeast quarter, southwest and northwest quarter-quarter in Ferndale, Oakland County, Michigan.

According to the MDEQ GeoWebFace website, the center of the subject property is located at latitude 42.4480 and a longitude of -83.1490.

4.0 FACILITY STATUS OF SUBJECT PROPERTY

As indicated in Section 2.4, based upon documented exceedances of the Part 201 Residential and Nonresidential DWP/DW, GSIP/GSI, DC, and VSI cleanup criteria, and Residential groundwater VISLs in samples collected from the subject property, the subject property is a facility as defined under Part 201 of P.A. 451, as amended, and the rules promulgated thereunder.

4.1 Summary Data Tables

The analytical results were compared with the MDEQ Generic Cleanup Criteria and Screening Levels as presented in Part 201 Rules 299.1 through 299.50, dated December 30, 2013 entitled "Cleanup Criteria Requirements for Response Activity" in accordance with Section 20120a(1) using the Residential and Nonresidential cleanup criteria.

The analytical results for compounds exceeding Part 201 cleanup criteria are summarized in Section 2.0. A summary of the analytical results are included in Tables 1A through 5.

4.2 Laboratory Reports and Chain of Custody Documentation

Samples collected by PM in 2015 and 2016 were submitted to Merit Laboratories, East Lansing, Michigan for chemical analysis under chain of custody procedures and within applicable holding times. Refer to the PM's laboratory analytical reports in Appendix C.

5.0 IDENTIFICATION OF BEA AUTHOR

This BEA was conducted on June 17, 2016, by Mr. Jamie Antoniewicz, P.E., Project Engineer, and reviewed by Mr. J. Adam Patton, CHMM, Manager of Site Investigation Services, PM

Baseline Environmental Assessment of the Former Ethyl Corp Property Located at 1600 West Eight Mile Road, Ferndale, Michigan PM Project No. 01-6124-1-0001; June 17, 2016

Environmental, Inc., which is prior to or within 45 days of becoming the property owner or operator. Qualification statements are provided as Appendix E.

We declare that, to the best of our professional knowledge and belief, we meet the definition of *Environmental Professional* as defined in §312.10 of 40 CFR 312 and we have the specific qualifications based on education, training, and experience to assess a property of the nature and history of the subject property. We have developed and performed the all appropriate inquires in conformance with the standards and practices set forth in 40 CFR Part 312.

Jamie Antoniewicz, P.E.

Project Engineer

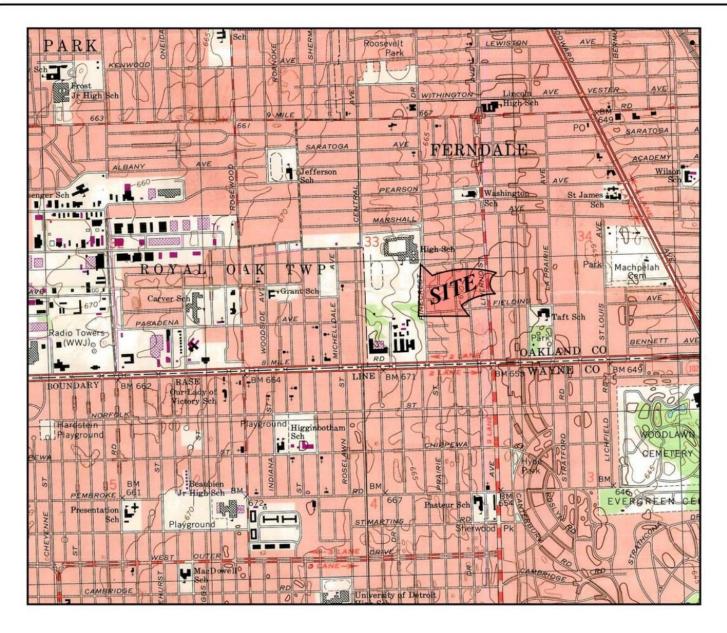
J. Adam Patton, CHMM

Manager of Site Investigation Services

6.0 AAI REPORT OR ASTM PHASE I ESA

As indicated in Section 1.3, PM completed a Phase I ESA update, dated June 16, 2016, in conformance with the scope and limitations of ASTM Practice E 1527-13, for the subject property (Parcel ID: 25-33-451-003 and 25-33-451-005) located 1600 West Eight Mile Road, Ferndale, Oakland County, Michigan 48220. The scope of the Phase I ESA included consideration of hazardous substances as defined in Section 20101(1)(x) of P.A 451 of 1994, as amended, and constituted the performance of an All Appropriate Inquiry in conformance with the standards and practices set forth in 40 CFR Part 312.

A copy of the June 2016 Phase I ESA update is included in Appendix A.


7.0 REFERENCES

- Michigan Department of Environmental Quality (MDEQ) Generic Cleanup Criteria and Screening Levels as presented in Part 201 Rules 299.1 through 299.50, dated December 30, 2013 entitled "Cleanup Criteria Requirements for Response Activity";
- MDEQ Operational Memorandum No. 4 "Site Characterization and Remediation Verification

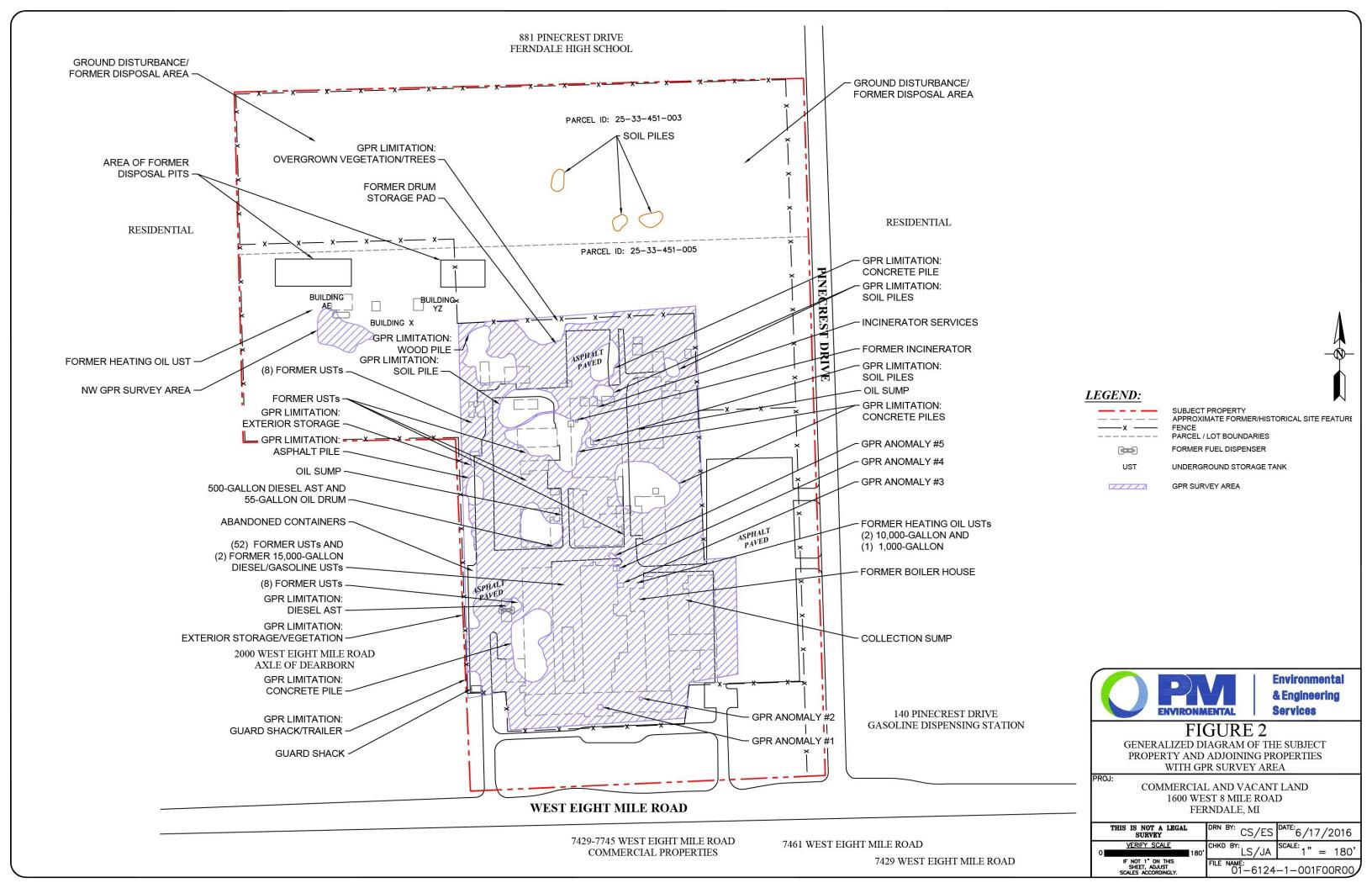
 Attachment 10, Peer Review Draft Groundwater Not in an Aquifer," February 2007;
- MDEQ Operational Memorandum No. 2 "Sampling and Analysis," October 22, 2004, Revised July 5, 2007;
- MDEQ June 2014 Non-Aqueous Phase Liquid (NAPL) Resource Document;
- MDEQ May 2013 Guidance Document for the Vapor Intrusion Pathway;
- Baseline Environmental Submittal Form (EQP 4025), September 2015;
- Health Department Correspondence, 1985-1986, Between Ethyl Corporation and Oakland County Health Division;
- LUST Closure Report, 4-3-1997, Swanson Environmental;
- Phase I ESA, 11-27-2012, RJN Environmental;
- BEA, 12-2-2012, RJN Environmental;
- Phase II ESA, 12-18-2012, RJN Environmental;
- Phase II ESA, 11-1-2013, RJN Environmental;
- Phase I ESA, 11-3-2015, PM; and,
- Phase I ESA, June 16, 2016, PM.

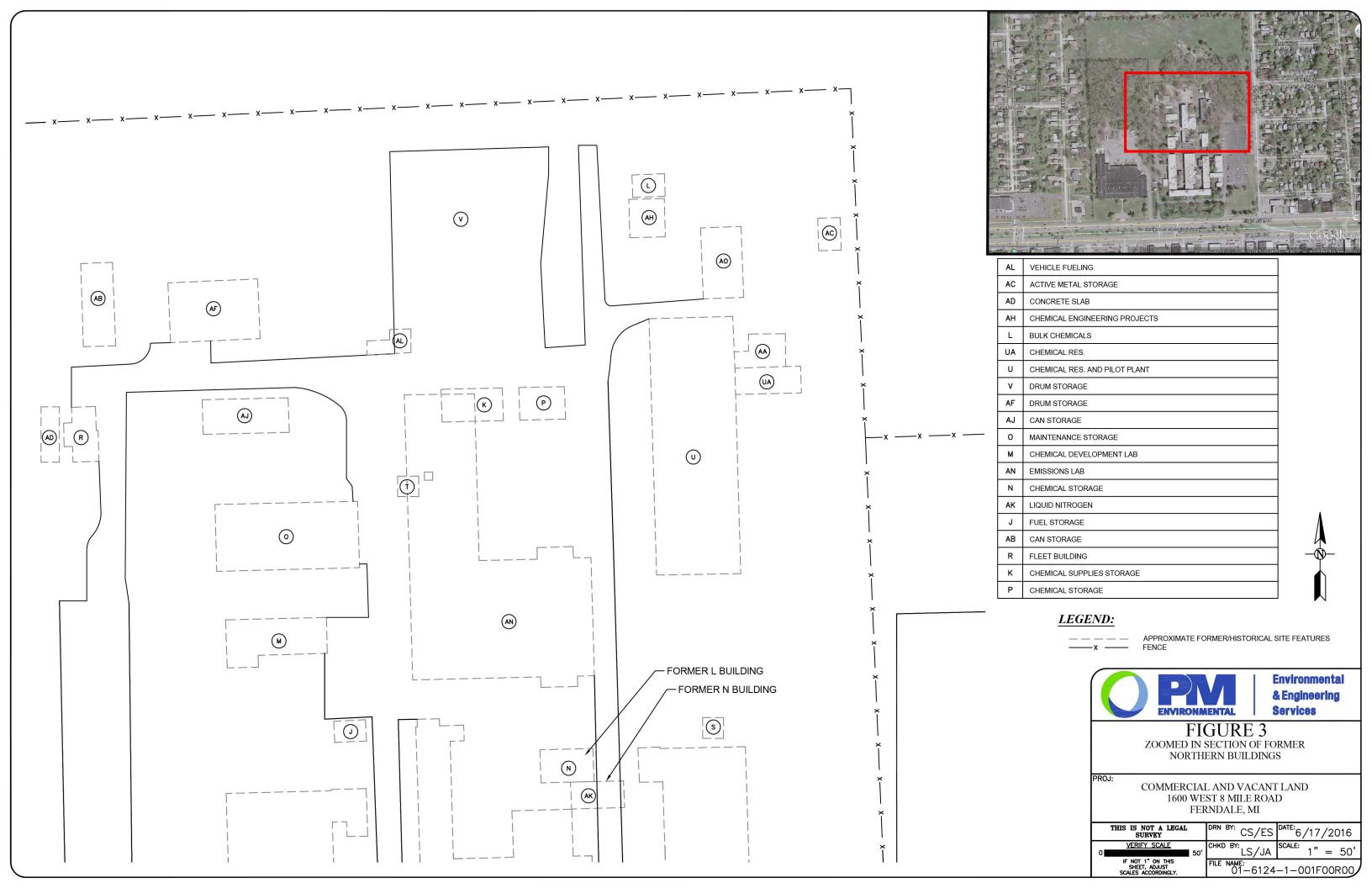
Figures

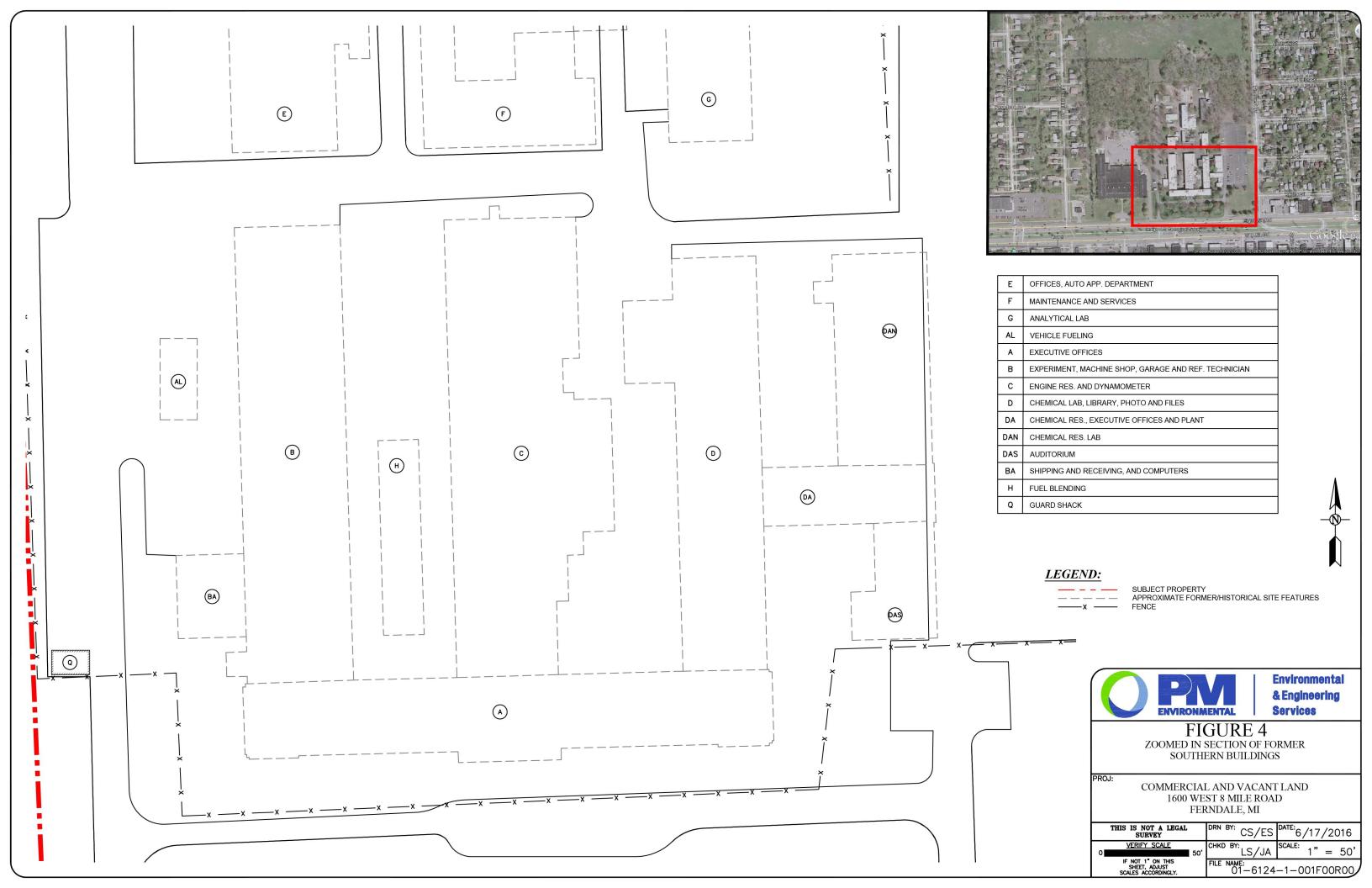
OAKLAND COUNTY

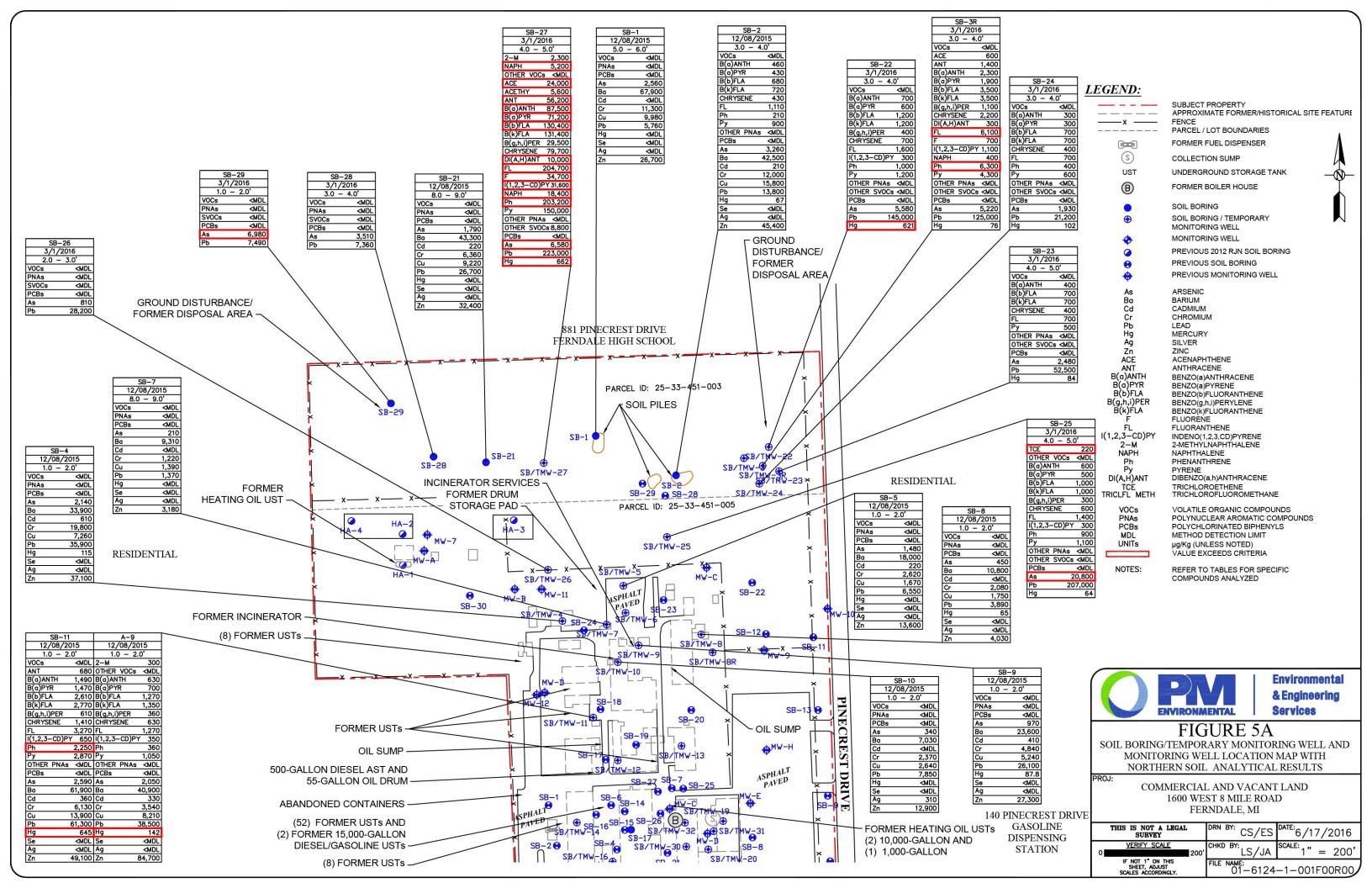
SCALE 1:24,000 MICHE

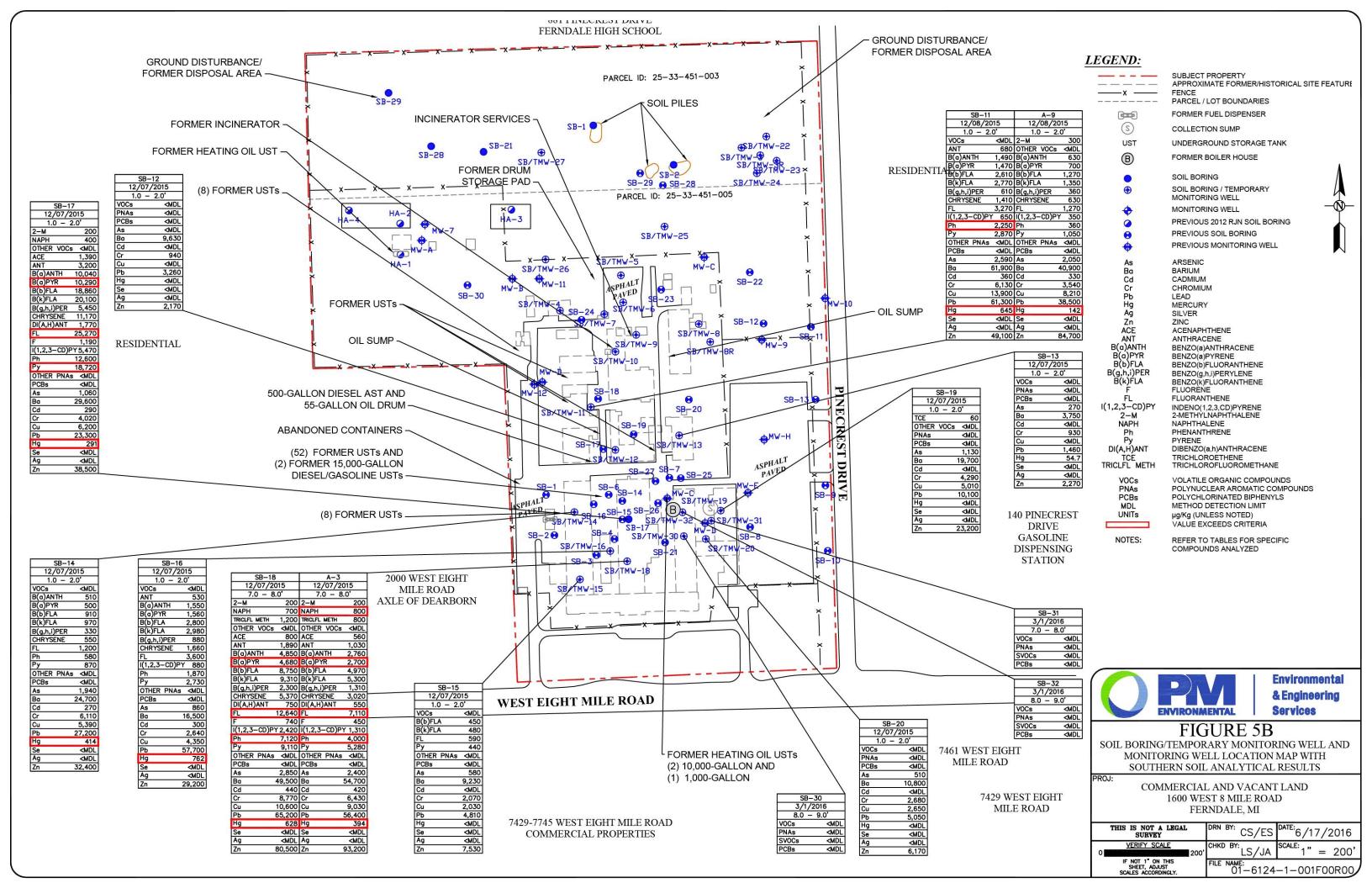
1 MILE 1/2 MILE 0 1 MILE

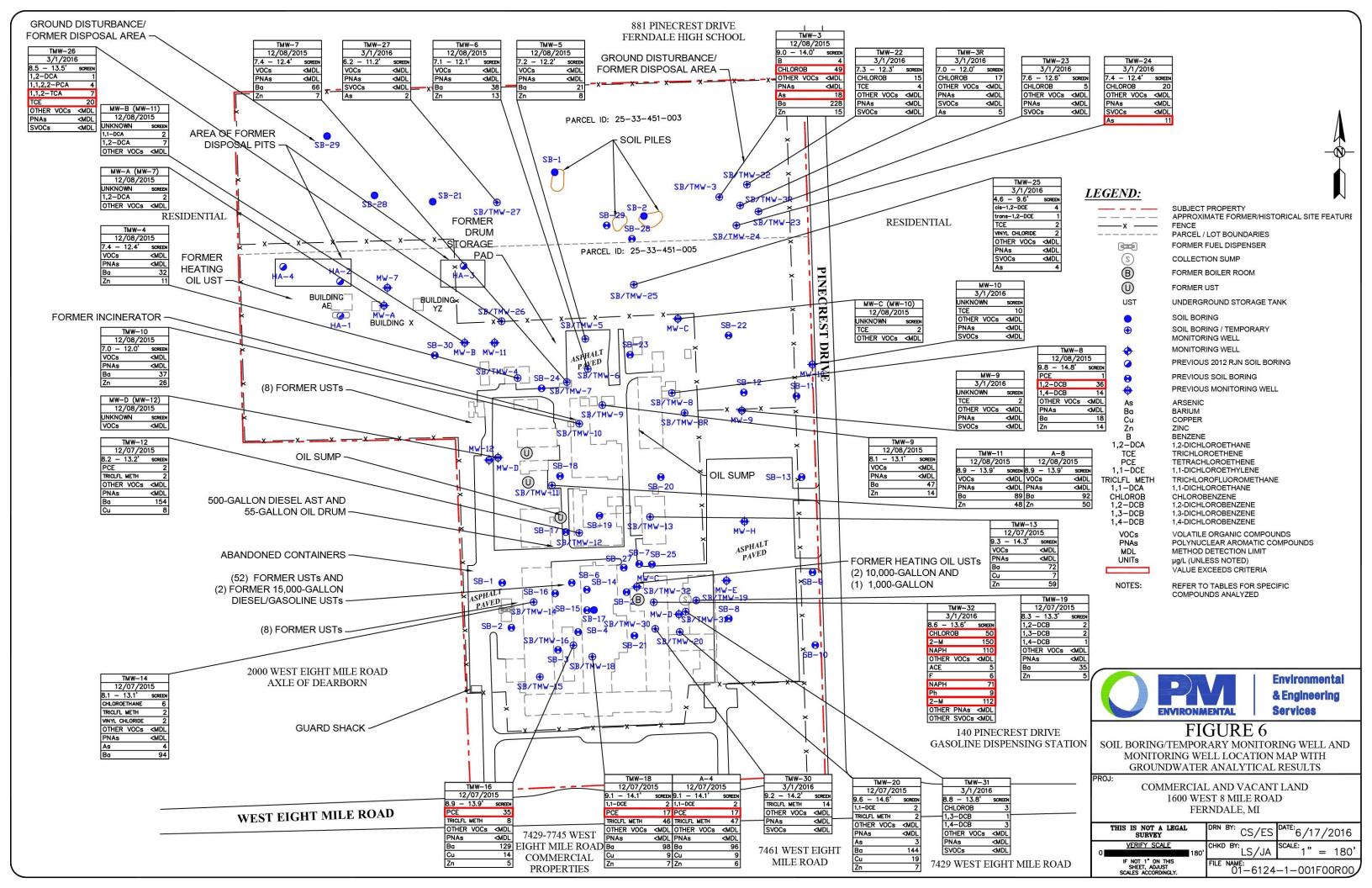

FIGURE 1


PROPERTY VICINITY MAP USGS, 7.5 MINUTE SERIES ROYAL OAK, MI QUADRANGLE, 1996.




Environmental & Engineering Services PROJ: VACANT INDUSTRIAL PROPERTY 1600 WEST 8 MILE ROAD FERNDALE, MI


THIS IS NOT A LEGAL SURVEY	DRN BY:	CS	DATE: 11,	/2/2015
VERIFY SCALE 2,000'	CHKD BY:	LS	SCALE: "	= 2.000
IF NOT 1" ON THIS SHEET, ADJUST SCALES ACCORDINGLY.	FILE NAME: 01-	-6124	-0-00	01F01R00



Tables

TABLE 1A SUMMARY OF 2015/2016 SOIL ANALYTICAL RESULTS VOCS 1600 WEST EIGHT MILE ROAD, FERNDALE, MICHIGAN PM PROJECT #01-6124-1-0001

	(µg/Kg)		2-Methylnaphthalene	Naphthalene	Trichloroethylene	Trichlorofluoromethane	Other VOCs
Chemical	Abstract Service Num		91576	91203	79016	75694	Various
Sample ID	Sample Date				VOCs		
SB-1	12/8/2015	5.0-6.0	<100	<400	<70	<100	<mdl< td=""></mdl<>
SB-2	12/8/2015	3.0-4.0	<100	<300	<60	<100	<mdl< td=""></mdl<>
SB-3R	3/1/2016	3.0-4.0	<100	<400	<70	<100	<mdl< td=""></mdl<>
SB-4	12/8/2015	1.0-2.0	<100	<300	<60	<100	<mdl< td=""></mdl<>
SB-5	12/8/2015	1.0-2.0	<100	<400	<70	<100	<mdl< td=""></mdl<>
SB-7	12/8/2015	8.0-9.0	<100	<400	<70	<100	<mdl< td=""></mdl<>
SB-8	12/8/2015	1.0-2.0	<100	<300	<70	<100	<mdl< td=""></mdl<>
SB-9	12/8/2015	1.0-2.0	<100	<400	<70	<100	<mdl< td=""></mdl<>
SB-10	12/8/2015	1.0-2.0	<100	<300	<60	<100	<mdl< td=""></mdl<>
SB-11	12/8/2015	10-20	<100	<300	<60	<100	<mdl< td=""></mdl<>
A-9	12/0/2010	1.0 2.0	300	<300	<70	<100	<mdl< td=""></mdl<>
SB-12	12/7/2015	1.0-2.0	<100	<300	<60	<100	<mdl< td=""></mdl<>
	12/7/2015	1.0-2.0	<100	<300	<60	<100	<mdl< td=""></mdl<>
			<100	<300	<60	<100	<mdl< td=""></mdl<>
CS202 804		0.0000000000000000000000000000000000000	<100	<300	<60	<100	<mdl< td=""></mdl<>
			<100	<300	<60	<100	<mdl< td=""></mdl<>
2	12/7/2015	1.0-2.0	200	400	<60	<100	<mdl< td=""></mdl<>
7,00000	12/7/2015	7.0-8.0	200	700	<70	1,200	<mdl< td=""></mdl<>
37230000			200	800	<70	800	<mdl< td=""></mdl<>
86748105577309			<100	<300	60	<100	<mdl< td=""></mdl<>
		1.000.700.000.70	<100	<300	<60	<100	<mdl< td=""></mdl<>
			<200	<400	<80	<200	<mdl< td=""></mdl<>
C251016-03000	20.007.007.000.000.000.000.000.000.000.0	100000000000000000000000000000000000000	<100	<300	<70	<100	<mdl< td=""></mdl<>
BETWEEN BUILDING FAX	A34,400 BEST 111 SECRETARY 0.0		<100	<300	<60	<100	<mdl< td=""></mdl<>
		Autoria discore	<100	<300	<70	<100	<mdl< td=""></mdl<>
			<200	<400	220 <70	<200	<mdl< td=""></mdl<>
COLOR CREW	COMPARE A CONTROL OF THE PARE A CONTROL OF T	62/14/100.14 100.14	<100	<300	<70	<100 <100	<mdl< td=""></mdl<>
ROUNDSHIEF.	ACA (ACADEMIC ACADEMIC ACADEMICA A		2,300 <6,000	5,200 <20,000	<3,000	<6,000	<mdl< td=""></mdl<>
	On Manual Control of the Control of	OCALI MARINE	<0,000	<300	<60	<100	<mdl< td=""></mdl<>
			<100	<300	<60	<100	<mdl< td=""></mdl<>
USAN (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986) (1986)	20/20/30/P5/00/P5/5/N	DA SERVICIO MARGINA	<100	<300	<60	<100	<mdl< td=""></mdl<>
	141/31-1-1/3	110000000	<100	<300	<60	<100	<mdl< td=""></mdl<>
5B-52	4					100	IVIDE
Generic Soil Cleans	up Criteria Tables 2 an	nd 3: Residential and No	on-Residential	Part 201 Gen	eric Cleanup	Criteria and S	creening
	Levels/Pa			ecember 30,	2013		
		Residentia	al (µg/Kg)				
			57,000	35,000	100	52,000	Various
Groundwater Surface V	Vater Interface Protect	tion (GSIP)	4,200	730	4,000 {X}	NA	Various
Sample ID Sample Date (Feet bgs)			2.70E+06	2.50E+05	1,000	2.8E+06 (C)	Various
Ambient Air Infinite So	urce Volatile Soil Inha	lation (Res VSI)	1.50E+06	3.00E+05	11,000	9.20E+07	Various
Ambient Air Finite VSI 1	for 5 Meter Source Thi	ckness	1.50E+06	3.00E+05	25,000	6.30E+08	Various
Ambient Air Finite VSI 1	or 2 Meter Source Thi	ckness	1.50E+06	3.00E+05	57,000	1.50E+09	Various
Ambient Air Particulate	Soil Inhalation (Res F	PSI)	6.70E+08	2.00E+08	1.30E+08	3.80E+12	Various
Direct Contact (Res DC)		8.10E+06	1.60E+07	5.0E+5 {C,DD}	7.9E+07 (C)	Various
		Nonresiden	tial (µg/Kg)	4			ų.
Drinking Water Protecti	ion (Nonres DWP)		1.70E+05	1.00E+05	100	1.50E+05	Various
Soil Volatilization to Inc	door Air Inhalation (No	onres SVII)	4.90E+06	4.70E+05	1,900	5.1E+06 {C}	Various
Ambient Air Infinite So	urce Volatile Soil Inha	lation (Nonres VSI)	1.80E+06	3.50E+05	14,000	1.10E+08	Various
Ambient Air Finite VSI	for 5 Meter Source Thi	ckness	1.80E+06	3.50E+05	25,000	1.40E+11	Various
Ambient Air Finite VSI	or 2 Meter Source Thi	ckness	1.80E+06	3.50E+05	58,000	1.40E+11	Various
Chemical Abstract Service Number (CAS#) Sample ID Sample Date (feet bgs)		es PSI)	2.90E+08	8.80E+07	5.90E+07	1.70E+12	Various
Direct Contact (Nonres	DC)		2.60E+07	5.20E+07	6.6E+05 {C,DD}	2.6E+08 {C}	Various
		Screening Le	vels (µg/Kg)				
0 11 0 1 11 0			10000	0.7431		100000000000000000000000000000000000000	

NA NA 5.00E+05 5.60E+05 Various

Soil Saturation Concentration Screening Levels (Csat)

BOLD Value Exceeds Applicable Criterion/RBSL bgs Below Ground Surface (feet)
MDL Laboratory method detection limit (MDL)
NA Not Applicable
NL Not Listed
NLL Not Likely to Leach
NLV Not Likely to Volatilize
ID Insufficient Data

TABLE 1B SUMMARY OF 2012 SOIL ANALYTICAL RESULTS VOCS 1600 WEST EIGHT MILE ROAD, FERNDALE, MICHIGAN PM PROJECT #01-6124-1-0001

VOLATILE ORGANIC COMPOUNDS (VOCs) (µg/Kg)			Acetone	Benzene	n-Butylbenzene	sec-Butylbenzene	Chlorobenzene	Chloroform	1,1-Dichloroethane	sis-1,2-Dichloroethylene	Ethylbenzene	Isopropyl benzene	p-Isopropyltoluene	Methylene chloride	2-Methylnaphthalene	Naphthalene	n-Propylbenzene	Tetrachloroethylene	Toluene	Trichloroethylene	1,2,3- Trimethylbenzene*	1,2,4-Trimethylbenzene	1,3,5-Trimethylbenzene	Xylenes	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	1,2,4-Trichlorobenzene	Other VOCs
Chemical	Abstract Service Num	ber (CAS#)	67641	71432	104518	135988	108907	67663	75343	156592	100414	98828	99876	75092	91576	91203	103651	127184	108883	79016	526738	95636	108678	1330207	95501	541731	106467	120821	Various
Sample ID	Sample Date	Sample Depth			MI											VOCs	10			10			<i>N</i>	30 0			772		
SB-1		(feet bgs)	-MDI	<mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th>-MDI</th><th><mdi< th=""><th><mdl< th=""><th><mdi< th=""><th><mdl< th=""><th>250</th><th>2000000000</th><th>_</th><th>-MDI</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<></th></mdi<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdi<></th></mdl<></th></mdi<></th></mdi<></th></mdi<></th></mdl<></th></mdl<></th></mdl<></th></mdi<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th>-MDI</th><th><mdi< th=""><th><mdl< th=""><th><mdi< th=""><th><mdl< th=""><th>250</th><th>2000000000</th><th>_</th><th>-MDI</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<></th></mdi<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdi<></th></mdl<></th></mdi<></th></mdi<></th></mdi<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th>-MDI</th><th><mdi< th=""><th><mdl< th=""><th><mdi< th=""><th><mdl< th=""><th>250</th><th>2000000000</th><th>_</th><th>-MDI</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<></th></mdi<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdi<></th></mdl<></th></mdi<></th></mdi<></th></mdi<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdi< th=""><th><mdi< th=""><th>-MDI</th><th><mdi< th=""><th><mdl< th=""><th><mdi< th=""><th><mdl< th=""><th>250</th><th>2000000000</th><th>_</th><th>-MDI</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<></th></mdi<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdi<></th></mdl<></th></mdi<></th></mdi<></th></mdi<></th></mdl<>	<mdi< th=""><th><mdi< th=""><th>-MDI</th><th><mdi< th=""><th><mdl< th=""><th><mdi< th=""><th><mdl< th=""><th>250</th><th>2000000000</th><th>_</th><th>-MDI</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<></th></mdi<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdi<></th></mdl<></th></mdi<></th></mdi<></th></mdi<>	<mdi< th=""><th>-MDI</th><th><mdi< th=""><th><mdl< th=""><th><mdi< th=""><th><mdl< th=""><th>250</th><th>2000000000</th><th>_</th><th>-MDI</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<></th></mdi<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdi<></th></mdl<></th></mdi<></th></mdi<>	-MDI	<mdi< th=""><th><mdl< th=""><th><mdi< th=""><th><mdl< th=""><th>250</th><th>2000000000</th><th>_</th><th>-MDI</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<></th></mdi<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdi<></th></mdl<></th></mdi<>	<mdl< th=""><th><mdi< th=""><th><mdl< th=""><th>250</th><th>2000000000</th><th>_</th><th>-MDI</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<></th></mdi<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdi<></th></mdl<>	<mdi< th=""><th><mdl< th=""><th>250</th><th>2000000000</th><th>_</th><th>-MDI</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<></th></mdi<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdi<>	<mdl< th=""><th>250</th><th>2000000000</th><th>_</th><th>-MDI</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<></th></mdi<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	250	2000000000	_	-MDI	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<></th></mdi<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<></th></mdi<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdi< th=""><th><mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<></th></mdi<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdi< th=""><th><mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<></th></mdi<></th></mdl<>	<mdi< th=""><th><mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<></th></mdi<>	<mdi< th=""><th><mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<></th></mdi<>	<mdl< th=""><th><mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<></th></mdl<>	<mdi< th=""><th>-MDI</th><th><mdl< th=""></mdl<></th></mdi<>	-MDI	<mdl< th=""></mdl<>
SB-2	10/4/2012 10/4/2012	10.0-12.0 8.0-10.0	<mdl< th=""><th><mdl< th=""><th>250 92</th><th>37 <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>250 92</th><th>37 <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>250 92</th><th>37 <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>250 92</th><th>37 <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>250 92</th><th>37 <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>250 92</th><th>37 <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>250 92</th><th>37 <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>250 92</th><th>37 <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>250 92</th><th>37 <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>250 92</th><th>37 <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>250 92</th><th>37 <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>250 92</th><th>37 <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	250 92	37 <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<>	<mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<>	<mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></mdl 	<mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<>	<mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<>	<mdl <mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></mdl 	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-3	10/4/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>19</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	19	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-4	10/4/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-5	10/4/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""><th>14,000</th><th>9,200</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>32,000</th><th>18,000</th><th>14,000</th><th><mdl< th=""><th>5,400</th><th>29,000</th><th></th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th></th><th>220,000</th><th></th><th>79,000</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>14,000</th><th>9,200</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>32,000</th><th>18,000</th><th>14,000</th><th><mdl< th=""><th>5,400</th><th>29,000</th><th></th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th></th><th>220,000</th><th></th><th>79,000</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	14,000	9,200	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>32,000</th><th>18,000</th><th>14,000</th><th><mdl< th=""><th>5,400</th><th>29,000</th><th></th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th></th><th>220,000</th><th></th><th>79,000</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>32,000</th><th>18,000</th><th>14,000</th><th><mdl< th=""><th>5,400</th><th>29,000</th><th></th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th></th><th>220,000</th><th></th><th>79,000</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>32,000</th><th>18,000</th><th>14,000</th><th><mdl< th=""><th>5,400</th><th>29,000</th><th></th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th></th><th>220,000</th><th></th><th>79,000</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>32,000</th><th>18,000</th><th>14,000</th><th><mdl< th=""><th>5,400</th><th>29,000</th><th></th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th></th><th>220,000</th><th></th><th>79,000</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	32,000	18,000	14,000	<mdl< th=""><th>5,400</th><th>29,000</th><th></th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th></th><th>220,000</th><th></th><th>79,000</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	5,400	29,000		<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th></th><th>220,000</th><th></th><th>79,000</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th></th><th>220,000</th><th></th><th>79,000</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th></th><th>220,000</th><th></th><th>79,000</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>		220,000		79,000	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-6	10/4/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""><th>200</th><th>55</th><th>10</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>20</th><th>14</th><th>21</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>200</th><th>55</th><th>10</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>20</th><th>14</th><th>21</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>200</th><th>55</th><th>10</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>20</th><th>14</th><th>21</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>200</th><th>55</th><th>10</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>20</th><th>14</th><th>21</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>200</th><th>55</th><th>10</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>20</th><th>14</th><th>21</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>200</th><th>55</th><th>10</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>20</th><th>14</th><th>21</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>200</th><th>55</th><th>10</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>20</th><th>14</th><th>21</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>200</th><th>55</th><th>10</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>20</th><th>14</th><th>21</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>200</th><th>55</th><th>10</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>20</th><th>14</th><th>21</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>200</th><th>55</th><th>10</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>20</th><th>14</th><th>21</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>200</th><th>55</th><th>10</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>20</th><th>14</th><th>21</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>200</th><th>55</th><th>10</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>20</th><th>14</th><th>21</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	200	55	10	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>20</th><th>14</th><th>21</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>20</th><th>14</th><th>21</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>20</th><th>14</th><th>21</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	20	14	21	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-7	10/4/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""><th>730</th><th>190</th><th>950</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>600</th><th>140</th><th>340</th><th><mdl< th=""><th>18,000</th><th>36,000</th><th></th><th><mdl< th=""><th>16,000</th><th><mdl< th=""><th>3,300</th><th>7,200</th><th>2,600</th><th>4,800</th><th>6,000</th><th>2,700</th><th>3,100</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>730</th><th>190</th><th>950</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>600</th><th>140</th><th>340</th><th><mdl< th=""><th>18,000</th><th>36,000</th><th></th><th><mdl< th=""><th>16,000</th><th><mdl< th=""><th>3,300</th><th>7,200</th><th>2,600</th><th>4,800</th><th>6,000</th><th>2,700</th><th>3,100</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	730	190	950	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>600</th><th>140</th><th>340</th><th><mdl< th=""><th>18,000</th><th>36,000</th><th></th><th><mdl< th=""><th>16,000</th><th><mdl< th=""><th>3,300</th><th>7,200</th><th>2,600</th><th>4,800</th><th>6,000</th><th>2,700</th><th>3,100</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>600</th><th>140</th><th>340</th><th><mdl< th=""><th>18,000</th><th>36,000</th><th></th><th><mdl< th=""><th>16,000</th><th><mdl< th=""><th>3,300</th><th>7,200</th><th>2,600</th><th>4,800</th><th>6,000</th><th>2,700</th><th>3,100</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>600</th><th>140</th><th>340</th><th><mdl< th=""><th>18,000</th><th>36,000</th><th></th><th><mdl< th=""><th>16,000</th><th><mdl< th=""><th>3,300</th><th>7,200</th><th>2,600</th><th>4,800</th><th>6,000</th><th>2,700</th><th>3,100</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	600	140	340	<mdl< th=""><th>18,000</th><th>36,000</th><th></th><th><mdl< th=""><th>16,000</th><th><mdl< th=""><th>3,300</th><th>7,200</th><th>2,600</th><th>4,800</th><th>6,000</th><th>2,700</th><th>3,100</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	18,000	36,000		<mdl< th=""><th>16,000</th><th><mdl< th=""><th>3,300</th><th>7,200</th><th>2,600</th><th>4,800</th><th>6,000</th><th>2,700</th><th>3,100</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	16,000	<mdl< th=""><th>3,300</th><th>7,200</th><th>2,600</th><th>4,800</th><th>6,000</th><th>2,700</th><th>3,100</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	3,300	7,200	2,600	4,800	6,000	2,700	3,100	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-8	10/4/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""><th>1,000</th><th>110</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>1,000</th><th>110</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>110</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>110</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>110</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>110</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>110</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>110</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>110</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1,000</th><th>110</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>1,000</th><th>110</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>1,000</th><th>110</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	1,000	110	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	12	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-9	10/4/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""><th>230</th><th>21</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>230</th><th>21</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>21</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>21</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>21</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>21</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>21</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>21</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>21</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>21</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>230</th><th>21</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>230</th><th>21</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	230	21	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-10	10/4/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""><th>79</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>79</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>79</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>79</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>79</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>79</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>79</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>79</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>79</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>79</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>79</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>79</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	79	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-11	10/5/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	71	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-12	10/5/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>71</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	71	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>48</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	48	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-14	10/5/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""><th>17</th><th>44</th><th>37</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>33</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>17</th><th>44</th><th>37</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>33</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	17	44	37	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>33</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>33</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>33</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>33</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>33</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>33</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>33</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>33</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>33</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	33	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-16	10/5/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-17	10/5/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""><th>50</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>50</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>50</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>50</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>50</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>50</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>50</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>50</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>50</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>50</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>50</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>50</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>50</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>50</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>50</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	50	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	12	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-18	10/5/2012	6.0-8.0	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-19	10/5/2012	8.0-10.0	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-20	10/5/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-21	10/5/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-22	10/5/2012	8.0-10.0	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-23	10/5/2012	8.0-10.0	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>26</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>35</th><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>26</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>35</th><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>26</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>35</th><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	26	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>35</th><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>35</th><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>35</th><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>35</th><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>35</th><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>35</th><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	35	<mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>230</th><th>180</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	230	180	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-24	10/8/2012	8.0-10.0	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-25	10/8/2012	10.0-12.0	300	140	830	140	<mdl< th=""><th><mdl< th=""><th>11</th><th>230</th><th>880</th><th>140</th><th>200</th><th>45</th><th>160,000</th><th>38,000</th><th>600</th><th>62</th><th>840</th><th>21</th><th>3,200</th><th>6,500</th><th>1,800</th><th>5,200</th><th>7,500</th><th>1,400</th><th>2,700</th><th>19</th><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>11</th><th>230</th><th>880</th><th>140</th><th>200</th><th>45</th><th>160,000</th><th>38,000</th><th>600</th><th>62</th><th>840</th><th>21</th><th>3,200</th><th>6,500</th><th>1,800</th><th>5,200</th><th>7,500</th><th>1,400</th><th>2,700</th><th>19</th><th><mdl< th=""></mdl<></th></mdl<>	11	230	880	140	200	45	160,000	38,000	600	62	840	21	3,200	6,500	1,800	5,200	7,500	1,400	2,700	19	<mdl< th=""></mdl<>
SB-26	10/8/2012	12.0-14.0	<mdl< th=""><th><mdl< th=""><th>46</th><th>260</th><th>47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>46</th><th>260</th><th>47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>46</th><th>260</th><th>47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>46</th><th>260</th><th>47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>46</th><th>260</th><th>47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>46</th><th>260</th><th>47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>46</th><th>260</th><th>47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>46</th><th>260</th><th>47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>46</th><th>260</th><th>47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>46</th><th>260</th><th>47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>46</th><th>260</th><th>47</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	46	260	47	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>12</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	12	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-27	10/8/2012	10.0-12.0	<mdl< th=""><th>31</th><th>180</th><th>46</th><th>780</th><th>32</th><th><mdl< th=""><th><mdl< th=""><th>200</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>6,900</th><th>9,700</th><th>160</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>120</th><th>94</th><th><mdl< th=""><th>210</th><th>130</th><th>370</th><th>370</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	31	180	46	780	32	<mdl< th=""><th><mdl< th=""><th>200</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>6,900</th><th>9,700</th><th>160</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>120</th><th>94</th><th><mdl< th=""><th>210</th><th>130</th><th>370</th><th>370</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>200</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>6,900</th><th>9,700</th><th>160</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>120</th><th>94</th><th><mdl< th=""><th>210</th><th>130</th><th>370</th><th>370</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	200	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>6,900</th><th>9,700</th><th>160</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>120</th><th>94</th><th><mdl< th=""><th>210</th><th>130</th><th>370</th><th>370</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>6,900</th><th>9,700</th><th>160</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>120</th><th>94</th><th><mdl< th=""><th>210</th><th>130</th><th>370</th><th>370</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>6,900</th><th>9,700</th><th>160</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>120</th><th>94</th><th><mdl< th=""><th>210</th><th>130</th><th>370</th><th>370</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	6,900	9,700	160	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>120</th><th>94</th><th><mdl< th=""><th>210</th><th>130</th><th>370</th><th>370</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>120</th><th>94</th><th><mdl< th=""><th>210</th><th>130</th><th>370</th><th>370</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>120</th><th>94</th><th><mdl< th=""><th>210</th><th>130</th><th>370</th><th>370</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	120	94	<mdl< th=""><th>210</th><th>130</th><th>370</th><th>370</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	210	130	370	370	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-28	10/8/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""><th>110</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>110</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>110</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>110</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>110</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>110</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>110</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>110</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>110</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>110</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>110</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>110</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>110</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	110	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-29	10/8/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
SB-30	10/8/2012	10.0-12.0	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
HA1	10/8/2012	8.0	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
HA2 HA3	10/8/2012	8.0	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
HA3	10/8/2012	8.0	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<></th></mdl<>	<mdl< th=""><th><mdl <mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></mdl </th></mdl<>	<mdl <mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></mdl 	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
ПАЧ	10/8/2012	8.0	<mdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><widl< th=""><th><mdl< th=""><th><wdl< th=""><th><wdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></wdl<></th></mdl<></th></widl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><widl< th=""><th><mdl< th=""><th><wdl< th=""><th><wdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></wdl<></th></mdl<></th></widl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<>	<wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><widl< th=""><th><mdl< th=""><th><wdl< th=""><th><wdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></wdl<></th></mdl<></th></widl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><widl< th=""><th><mdl< th=""><th><wdl< th=""><th><wdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></wdl<></th></mdl<></th></widl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><widl< th=""><th><mdl< th=""><th><wdl< th=""><th><wdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></wdl<></th></mdl<></th></widl<></th></mdl<></th></mdl<>	<mdl< th=""><th><widl< th=""><th><mdl< th=""><th><wdl< th=""><th><wdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></wdl<></th></mdl<></th></widl<></th></mdl<>	<widl< th=""><th><mdl< th=""><th><wdl< th=""><th><wdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></wdl<></th></mdl<></th></widl<>	<mdl< th=""><th><wdl< th=""><th><wdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></wdl<></th></mdl<>	<wdl< th=""><th><wdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></wdl<>	<wdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<></th></mdl<>	<wdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></wdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>< WIDL</th></mdl<></th></mdl<>	<mdl< th=""><th>< WIDL</th></mdl<>	< WIDL
		(Generic So	oil Cleanur	p Criteria	Tables 2 a	nd 3: Res	idential a			Part 201		leanup Cı				Part 213 R	isk-Based	Screenin	g Levels,	Decembe	r 30, 2013							
Drinking Water Protecti	ion (Res DWP)		15,000	100	1,600	1,600	2,000	1,600 {W}	18,000	1,400	1,500	Residentia 91,000	NL	100	57,000	35,000	1,600	100	16,000	100	1,800	2,100	1,800	5,600	14,000	170	1,700	4,200	Various
Groundwater Surface V		ion (GSIP)	34,000	4,000 {X}	1,000 ID	1,000 ID	500	7,000 (₩)	15,000	1,400	360	3,200	NL NL	30,000 {X}	4,200	730	1,600	1,200 {X}	5,400	4,000 {X}	570	570	1,100	820	280	680	360	4,200 5,900 {X}	0,000,000,000
		Company of the company of	2.90E+08			5810						3,200 4.0E+05				•	•		3.3E+05		2.6E+06	4.3E+06	2.6E+06						
Soil Volatilization to Ind	loor Air Inhalation (Res	s SVII)	{C}	1,600	ID	ID	1.20E+05	7,200	2.30E+05	22,000	87,000	{C}	NL	45,000	2.70E+06		ID	11,000	{C}	1,000	{C}	{C}	{C}	6.3E+06 {C}	2.1E+5 {C}	26,000	19,000	1.1E+6 {C}	Various
Ambient Air Infinite Sou			1.30E+08	13,000	ID	ID	7.70E+05	45,000	2.10E+06	1.80E+05			NL	2.10E+05	1.50E+06	3.00E+05	ID	1.70E+05				2.10E+07	1.60E+07		3.90E+07	79,000	77,000	2.80E+07	Various
Ambient Air Finite VSI fo	or 5 Meter Source Thic	kness	1.30E+08	34,000	ID	ID	9.90E+05	1.20E+05	5.90E+06	4.20E+05	1.00E+06	1.70E+06	NL	5.90E+05	1.50E+06	3.00E+05	ID	4.80E+05	5.10E+06	25,000	3.80E+08	5.00E+08	3.80E+08	6.10E+07	3.90E+07	79,000	77,000	2.80E+07	Various
Ambient Air Finite VSI fo	or 2 Meter Source Thic	kness	1.90E+08	79,000	ID	ID	2.10E+06	2.70E+05	1.40E+07	9.90E+05	2.20E+06	2.80E+06	NL	1.40E+06	1.50E+06	3.00E+05	ID	1.1E+06	1.20E+07	57,000	3.80E+08	5.00E+08	3.80E+08	1.30E+08	5.20E+07	1.10E+05	1.10E+05	2.80E+07	Various
Ambient Air Particulate	Soil Inhalation (Res P	SI)	3.90E+11	3.80E+08	2.00E+09	4.00E+08	4.70E+09	1.30E+09	3.30E+10	2.30E+09	1.00E+10	5.80E+09	NL	6.60E+09	6.70E+08	2.00E+08	1.30E+09	2.7E+09	2.70E+10	1.30E+08		8.20E+10		2.90E+11	1.00E+11	2.00E+08	4.50E+08	2.50E+10	Various
Direct Contact (Res DC))		2.30E+07	1.80E+05	2.50E+06	2.50E+06	4.3E+06 {C}	1.20E+06	2.7E+07 {C}	2.5E+06 {C}	2.2E+07 {C}	2.5E+07 {C} onresident	NL tial (ug/Ko		8.10E+06	1.60E+07	2.50E+06	2.0E+05 {C}	5.0E+07 {C}	5.0E+5 {C,DD}	3.2E+07 {C}	3.2E+07 {C}	3.2E+07 {C}	4.1E+08 {C}	2.1E+5 {C}	2.0E+05 {C}	4.00E+05	9.9E+5 {DD}	Various
Drinking Water Protecti	Drinking Water Protection (Nonres DWP)			100	4,600	4,600	2,000	1,600 {W}	50,000	1,400	1,500	2.60E+05	NL	100	1.70E+05	1.00E+05	4,600	100	16,000	100	1,800	2,100	1,800	5,600	14,000	480	1,700	4,200	Various
Soil Volatilization to Ind		oras SVIII	42,000 5.40E+08	8,400	ID	ID	2.20E+05	0.0000000000000000000000000000000000000	4.30E+05	41,000	4.6E+05	7.3E+05	NL	2.40E+05	***************************************			21,000	6.1E+05	1,900	4.8E+06	8.0E+06	4.8E+06				1.00E+05		
	352	\$500	{C}			7000		38,000			{C}	{C}			4.90E+06			- 03	{C}		{C}	{C}	{C}		2.1E+5 {C}	ID		1.1E+6 {C}	_
Ambient Air Infinite Sou	7,000,000,000,000,000		1.60E+08	45,000	ID	ID	9.20E+05	1.50E+05	2.50E+06	2.10E+05	2.40E+06		NL	7.00E+05		_	_	2.10E+05	3.30E+06		_	2.50E+07			4.60E+07	ID	2.60E+05	3.40E+07	_
Ambient Air Finite VSI for 5 Meter Source Thickness		1.60E+08	99,000	ID	ID	1.10E+06	3.40E+05	6.00E+06	4.30E+05			NL	1.70E+06	100200000000000000000000000000000000000		-	4.90E+05	3.60E+07			6.00E+08			4.60E+07	ID	2.60E+05	3.40E+07		
Ambient Air Finite VSI for 2 Meter Source Thickness		2.00E+08	2.30E+05	ID	ID	2.10E+06	7.90E+05	1.40E+07	1.00E+06	6.50E+06	3.00E+06	NL	4.00E+06	1.80E+06	3.50E+05		1.1E+06	3.60E+07	58,000	4.60E+08	6.00E+08	4.60E+08	200 200 - 100	5.50E+07	ID	3.40E+05	3.40E+07		
Ambient Air Particulate	Soil Inhalation (Nonre	s PSI)	1.70E+11	4.70E+08	ID	ID	2.10E+09	1.60E+09	1.50E+10	1.00E+09	1.30E+10		NL	8.30E+09	2.90E+08	8.80E+07	5.90E+08	1.2E+09	1.20E+10			3.60E+10		1.30E+11	4.40E+10	ID	5.70E+08	1.10E+10	Various
Direct Contact (Nonres	DC)		7.30E+07	8.40E+05 {C}	8.00E+06	8.00E+06	1.4E+07 {C}	5.5E+06 {C}	8.7E+07 {C}	8.0E+06 {C}	7.1E+07 {C}	8.0E+07 {C}	NL	5.8E+06 {C}	2.60E+07	5.20E+07	8.00E+06	9.3E+05 {C}	1.6E+08 {C}	6.6E+05 {C,DD}	1.0E+08 {C}	1.0E+08 {C}	1.0E+08 {C}	1.0E+09 {C}	2.1E+5 {C}	1.7E+5 (C)	1.90E+06	1.1E+6 {C,DD}	Various
												eening Le	vels (µg/l				•												
Soil Saturation Concent	tration Screening Leve	els (Csat)	1.10E+08	4.00E+05	1.00E+07	1.00E+07	2.60E+05	1.50E+06	8.90E+05	6.40E+05	1.40E+05	3.90E+05	NL	2.30E+06	NA	NA	1.00E+07	88,000	2.50E+05	5.00E+05	94,000	1.10E+05	94,000	1.50E+05	2.10E+05	1.70E+05	NA	1.10E+06	Various

BOLD Value Exceeded

bgs Below Ground Surface (feet)

MDL Laboratory method detection limit (MDL)

NA Not Applicable

NL Not Listed

NLL Not Likely to Leach

NLV Not Likely to Volatilize

ID Insufficient Data

TABLE 2A SUMMARY OF 2015/2016 SOIL ANALYTICAL RESULTS SVOCs 1600 WEST EIGHT MILE ROAD, FERNDALE, MICHIGAN PM PROJECT #01-6124-1-0001

SEMI-VOLAT	ILE ORGANIC COMPO (μg/Kg)	UNDS (SVOCs)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene	2-Methylnaphthalene	Other SVOCs/PNAs
Chemical	Abstract Service Num	nber (CAS#)	83329	208968	120127	56553	50328	205992	207089	191242	218019	53703	206440	86737	193395	91203	85018	129000	91576	Various
Sample ID	Sample Date	Sample Depth									svo	Cs			•					
~0.000 to 1.11.1 × 0.000 to 0.00		(feet bgs)	000	000	000	000	000	000	000	000			000	000	000	000	000	000	000	MDI
SB-1 SB-2	12/8/2015	5.0-6.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330 <330	<330	<330	<330	<mdl< td=""></mdl<>
SB-3R	12/8/2015 3/1/2016	3.0-4.0 3.0-4.0	<330 600	<330 <300	<330 1,400	460 2,300	430 1,900	680 3,500	720 3,500	<330 1,100	430 2,200	<330 300	1,110 6,100	<330 700	<330 1,100	400	920 6,300	900 4,300	<330 <330	<mdl< td=""></mdl<>
SB-4	12/8/2015	1.0-2.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<mdl< td=""></mdl<>
SB-5	12/8/2015	1.0-2.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<mdl< td=""></mdl<>
SB-7	12/8/2015	8.0-9.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<mdl< td=""></mdl<>
SB-8	12/8/2015	1.0-2.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<mdl< td=""></mdl<>
SB-9	12/8/2015	1.0-2.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<mdl< td=""></mdl<>
SB-10	12/8/2015	1.0-2.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<mdl< td=""></mdl<>
SB-11	12/0/2013	1.0-2.0	<330	<330	680	1,490	1,470	2,610	2,770	610	1,410	<330	3,270	<330	650	<330	2,250	2,870	<330	<mdl< td=""></mdl<>
A-9	12/8/2015	1.0-2.0	<330	<330	<330	630	700	1,270	1,350	360	630	<330	1,270	<330	350	<330	360	1,050	<330	<mdl< td=""></mdl<>
SB-12	12/7/2015	1.0-2.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<mdl< td=""></mdl<>
SB-13	12/7/2015	1.0-2.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<mdl< td=""></mdl<>
SB-14	12/7/2015	1.0-2.0	<330	<330	<330	510	500	910	970	330	550	<330	1,200	<330	<330	<330	580	870	<330	<mdl< td=""></mdl<>
SB-15	12/7/2015	1.0-2.0	<330	<330	<330	<330	<330	450	480	<330	<330	<330	590	<330	<330	<330	<330	440	<330	<mdl< td=""></mdl<>
SB-16	12/7/2015	1.0-2.0	<330	<330	530	1,550	1,560	2,800	2,980	880	1,660	<330	3,600	<330	880	<330	1,870	2,730	<330	<mdl< td=""></mdl<>
SB-17	12/7/2015	1.0-2.0	1,390	<370	3,200	10,040	10,290	18,860	20,100	5,450	11,170	1,770	25,270	1,190	5,470	<370	12,600	18,720	<370	<mdl< td=""></mdl<>
SB-18	12/1/2013	1.0-2.0	800	<330	1,890	4,850	4,680	8,750	9,310	2,300	5,370	750	12,640	740	2,420	<330	7,120	9,110	<330	<mdl< td=""></mdl<>
A-3	12/7/2015	7.0-8.0	560	<330	1,030	2,760	2,700	4,970	5,300	1,310	3,020	550	7,110	450	1,310	<330	4,000	5,280	<330	<mdl< td=""></mdl<>
SB-19	12/7/2015	1.0-2.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<mdl< td=""></mdl<>
SB-20	12/7/2015	1.0-2.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<mdl< td=""></mdl<>
SB-21	12/8/2015	8.0-9.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<mdl< td=""></mdl<>
SB-22	3/1/2016	3.0-4.0	<300	<300	<300	700	600	1,200	1,200	400	700	<300	1,600	<300	300	<300	1,000	1,200	<300	<mdl< td=""></mdl<>
SB-23	3/1/2016	4.0-5.0	<300	<300	<300	400	<300	700	700	<300	400	<300	700	<300	<300	<300	<300	500	<300	<mdl< td=""></mdl<>
SB-24	3/1/2016	3.0-4.0	<300	<300	<300	300	300	700	700	<300	400	<300	700	<300	<300	<300	400	600	<300	<mdl< td=""></mdl<>
SB-25	3/1/2016	4.0-5.0	<300	<300	<300	600	500	1,000	1,000	300	600	<300	1,400	<300	300	<300	900	1,100	<300	<mdl< td=""></mdl<>
SB-26	3/1/2016	2.0-3.0	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""></mdl<>
SB-27	3/1/2016	4.0-5.0	24,000	5,600	56,200	87,500	71,200	130,400	131,400	29,500	79,700	10,000	204,700	34,700	31,600	18,400	203,200	150,000	8,800	<mdl< td=""></mdl<>
SB-28	3/1/2016	3.0-4.0	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""></mdl<>
SB-29	3/1/2016	1.0-2.0	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""></mdl<>
SB-30	3/1/2016	8.0-9.0	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""></mdl<>
SB-31	3/1/2016	7.0-8.0	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""></mdl<>
SB-32	3/1/2016	8.0-9.0	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<300	<mdl< td=""></mdl<>
0B-02	3/1/2010	0.0-0.0	<500	300	300	300	-300	300	300	300	300	300	300	300	300	300	300	300	300	IVIDE
	Generic Soil Clea	anup Criteria Tables 2 ar	nd 3: Resid				t 201 Gen	eric Clean	up Criteria	y (R 299.1 and Scree			3 Risk-Bas	ed Screer	ning Levels	s, Decemb	er 30, 2013	3		
							The second of the	dential (µg												
Drinking Water Protect			3.00E+05	5,900	41,000	NLL	NLL	NLL	NLL	NLL	NLL	NLL	7.30E+05	3.90E+05	NLL	35,000	56,000	4.80E+05	57,000	Various
Groundwater Surface \		· /	8,700	ID	ID	NLL	NLL	NLL	NLL	NLL	NLL	NLL	5,500	5,300	NLL	730	2,100	ID	4,200	Various
Soil Volatilization to In	door Air Inhalation (Re	es SVII)	1.9E+08	1.60E+06	1.0E+9 {D}	NLV	NLV	ID	NLV	NLV	ID	NLV	1.0E+9 {D}	5.8E+08	NLV	2.50E+05	2.8E+06	1.0E+9 {D}	2.70E+06	Various
Ambient Air Infinite So	urce Volatile Soil Inha	lation (Res VSI)	8.1E+07	2.2E+06	1.4E+09	NLV	NLV	ID	NLV	NLV	ID	NLV	7.40E+08	1.3E+08	NLV	3.0E+05	1.6E+05	6.5E+08	1.50E+06	Various
Ambient Air Finite VSI	for 5 Meter Source Thi	ickness	8.1E+07	2.2E+06	1.4E+09	NLV	NLV	ID	NLV	NLV	ID	NLV	7.4E+08	1.3E+08	NLV	3.0E+05	1.6E+05	6.5E+08	1.50E+06	Various
Ambient Air Finite VSI	for 2 Meter Source Thi	ickness	8.1E+07	2.2E+06	1.4E+09	NLV	NLV	ID	NLV	NLV	ID	NLV	7.4E+08	1.3E+08	NLV	3.0E+05	1.6E+05	6.5E+08	1.50E+06	Various
Ambient Air Particulate	Soil Inhalation (Res F	PSI)	1.4E+10	2.3E+09	6.7E+10	ID	1.5E+06	ID	ID	8.0E+08	ID	ID	9.3E+09	9.3E+09	ID	2.0E+08	6.7E+06	6.7E+09	6.70E+08	Various
Direct Contact (Res DC	()		4.1E+07	1.6E+06	2.3E+08	20,000	2,000	20,000	2.00E+05	2.5E+06	2.0E+06	2,000	4.6E+07	2.7E+07	20,000	1.6E+07	1.6E+06	2.9E+07	8.10E+06	Various
							Nonre	sidential (µ	ug/Kg)											
Drinking Water Protect	tion (Nonres DWP)		8.80E+05	17,000	41,000	NLL	NLL	NLL	NLL	NLL	NLL	NLL	7.30E+05	8.90E+05	NLL	1.00E+05	1.60E+05	4.80E+05	1.70E+05	Various
Soil Volatilization to In	door Air Inhalation (No	onres SVII)	3.5E+08	3.0E+06	1.0E+9 {D}	NLV	NLV	ID	NLV	NLV	ID	NLV	1.0E+9 {D}	1.0E+9 {D}	NLV	4.70E+05	5.1E+06	1.0E+9 {D}	4.90E+06	Various
Ambient Air Infinite So	urce Volatile Soil Inha	lation (Nonres VSI)	9.7E+07	2.7E+06	1.6E+09	NLV	NLV	ID	NLV	NLV	ID	NLV	8.9E+08	1.5E+08	NLV	3.50E+05	1.90E+05	7.8E+08	1.80E+06	Various
Ambient Air Finite VSI	for 5 Meter Source Thi	ckness	9.7E+07	2.7E+06	1.6E+09	NLV	NLV	ID	NLV	NLV	ID	NLV	8.8E+08	1.5E+08	NLV	3.50E+05	1.90E+05	7.8E+08	1.80E+06	Various
	for 2 Meter Source Thi	ickness	9.7E+07	2.7E+06	1.6E+09	NLV	NLV	ID	NLV	NLV	ID	NLV	8.8E+08	1.5E+08	NLV	3.50E+05	1.90E+05	7.8E+08	1.80E+06	Various
Ambient Air Finite VSI				1.0E+09	2.9E+10	ID	1.9E+06	ID	ID	3.5E+08	ID	ID	4.1E+09	4.1E+09	ID	8.8E+07	2.9E+06	2.9E+09	2.90E+08	Various
Ambient Air Finite VSI Ambient Air Particulate	e Soil Inhalation (Nonre	es PSI)	6.2E+09	1.UE+U9	2.3E+10	ID I	1.35400	ID	ID	3.5E+U0	1 10	I ID	4. IL 100			0.0L.07	2.52.00	2.3LTU3	2.50L100	
	5.75	es PSI)	6.2E+09 1.3E+08	5.2E+06	7.3E+08	80,000	8,000	80,000	8.00E+05	7.0E+06	8.0E+06	8,000	1.3E+08	8.7E+07	80,000	5.2E+07	5.2E+06	8.4E+07	2.60E+07	Various
Ambient Air Particulate	5.75	es PSI)	_				8,000	_	8.00E+05			_					_			-

Criterion/RBSL Exceeded

Criterion/RBSL Exceeded

Value Exceeds Applicable Criterion/RBSL
bgs Below Ground Surface (feet)
Laboratory method detection limit (MDL)
NA Not Applicable
NL Not Listed
NLL Not Likely to Leach
NLV Not Likely to Volatilize
ID Insufficient Data

TABLE 2A SUMMARY OF 2015/2016 SOIL ANALYTICAL RESULTS SVOCs 1600 WEST EIGHT MILE ROAD, FERNDALE, MICHIGAN PM PROJECT #01-6124-1-0001

POLYNUCLEA	AR AROMATIC COMP (µg/Kg)	OUNDS (PNAs)	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a)anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Chrysene	Dibenzo(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Naphthalene	Phenanthrene	Pyrene
Chemical	Abstract Service Num	nber (CAS#)	83329	208968	120127	56553	50328	205992	207089	191242	218019	53703	206440	86737	193395	91203	85018	129000
		Sample Depth									0.000		200.10					.2000
Sample ID	Sample Date	(feet bgs)								PI	NAs							
SB-1	10/4/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-2	10/4/2012	8.0-10.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330
SB-3	10/4/2012	10.0-12.0	<330	<330	<330	<330	34	48	<330	<330	34	<330	62	<330	<330	<330	<330	54
SB-4	10/4/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-5	10/4/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-6	10/4/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-7	10/4/2012	10.0-12.0	52,000	<330	64,000	18,000	<330	<330	<330	<330	29,000	<330	<330	81,000	<330	64,000	380,000	170,000
SB-8	10/4/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-9	10/4/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-10	10/4/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-11	10/5/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-12	10/5/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-14	10/5/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-16	10/5/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-17	10/5/2012	10.0-12.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330
SB-18	10/5/2012	6.0-8.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-19	10/5/2012	8.0-10.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-20	10/5/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-21	10/5/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-22	10/5/2012	8.0-10.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330
SB-23	10/5/2012	8.0-10.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330
SB-24	10/8/2012	8.0-10.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330
SB-25	10/8/2012	10.0-12.0	<330	67,000	80,000	<330	<330	<330	<330	<330	<330	<330	<330	100,000	<330	100,000	410,000	200,000
SB-26	2003/0004/004/004/004/004	5.75.001,76.75.75.75.75.007	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	_		NS
SB-27	10/8/2012	12.0-14.0			757777				<330				_	_		NS 4.400	NS 44.000	_
SB-28	10/8/2012	10.0-12.0	2,400	<330	2,600	<330	<330	<330	_	<330	2,400	<330	2,600	3,300	<330	4,400	14,000	7,400
SB-29	10/8/2012	10.0-12.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330
SB-30	10/8/2012	10.0-12.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	39	<330	<330	<330	<330	<330
90000000000000000000000000000000000000	10/8/2012	10.0-12.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330
HA1	10/8/2012	8.0	<330	<330	<330	6.2	<330	<330	<330	<330	6.8	<330	1.2	<330	<330	<330	<330	<330
HA2	10/8/2012	8.0	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330	<330
HA3	10/8/2012	8.0	<330	<330	<330	26	43	68	18	29	40	<330	59	<330	29	<330	20	45
HA4	10/8/2012	8.0	<330	<330	19	23	280	460	120	150	280	44	460	<330	150	<330	100	370
Gen	eric Soil Cleanup Crite	eria Tables 2 and 3: Res				art 201 Ge	neric Clear	nup Criteri	ity (R 299. ia and Scre			13 Risk-Ba	sed Scree	ning Level	s, Decemi	ber 30, 201	3	
Deinking W-t Bt 1	ion (Dos DIAD)		I a acc		.,		idential (µ	1	1		I		7.00=	L a co= ==		05.000	F0	4.00= ==
Drinking Water Protect			3.00E+05	5,900	41,000	NLL	NLL	NLL	NLL	NLL	NLL	NLL	7.30E+05	3.90E+05	NLL	35,000	56,000	4.80E+05
Groundwater Surface V			8,700	ID	ID	NLL	NLL	NLL	NLL	NLL	NLL	NLL	5,500	5,300	NLL	730	2,100	ID
Soil Volatilization to Inc			1.9E+08	1.60E+06	1.0E+9 {D}	NLV	NLV	ID	NLV	NLV	ID	NLV	1.0E+9 (D)		NLV	2.50E+05	2.8E+06	1.0E+9 {D}
Ambient Air Infinite So	urce Volatile Soil Inha	lation (Res VSI)	8.1E+07	2.2E+06	1.4E+09	NLV	NLV	ID	NLV	NLV	ID	NLV	7.40E+08	1.3E+08	NLV	3.0E+05	1.6E+05	6.5E+08
Ambient Air Finite VSI 1	for 5 Meter Source Thi	ickness	8.1E+07	2.2E+06	1.4E+09	NLV	NLV	ID	NLV	NLV	ID	NLV	7.4E+08	1.3E+08	NLV	3.0E+05	1.6E+05	6.5E+08
Ambient Air Finite VSI t	for 2 Meter Source Thi	ickness	8.1E+07	2.2E+06	1.4E+09	NLV	NLV	ID	NLV	NLV	ID	NLV	7.4E+08	1.3E+08	NLV	3.0E+05	1.6E+05	6.5E+08
Ambient Air Particulate	bient Air Particulate Soil Inhalation (Res PSI)				6.7E+10	ID	1.5E+06	ID	ID	8.0E+08	ID	ID	9.3E+09	9.3E+09	ID	2.0E+08	6.7E+06	6.7E+09
Direct Contact (Res DC	;)		4.1E+07	1.6E+06	2.3E+08	20,000	2,000	20,000	2.00E+05	2.5E+06	2.0E+06	2,000	4.6E+07	2.7E+07	20,000	1.6E+07	1.6E+06	2.9E+07
							esidential (μg/Kg)	'	1	•		_	•		'		
Drinking Water Protecti	ion (Nonres DWP)		8.80E+05	17,000	41,000	NLL	NLL	NLL	NLL	NLL	NLL	NLL	7.30E+05	8.90E+05	NLL	1.00E+05	1.60E+05	4.80E+05
Soil Volatilization to Inc		onres SVII)	3.5E+08	3.0E+06	1.0E+9 {D}	NLV	NLV	ID	NLV	NLV	ID	NLV	1.0E+9 {D}		NLV	4.70E+05	5.1E+06	1.0E+9 {D}
Ambient Air Infinite So		•	9.7E+07	2.7E+06	1.6E+09	NLV	NLV	ID	NLV	NLV	ID	NLV	8.9E+08	1.5E+08	NLV	3.50E+05	1.90E+05	7.8E+08
Ambient Air Finite VSI			9.7E+07	2.7E+06	1.6E+09	NLV	NLV	ID	NLV	NLV	ID	NLV	8.8E+08	1.5E+08	NLV	3.50E+05	1.90E+05	7.8E+08
Ambient Air Finite VSI		7	9.7E+07	2.7E+06	1.6E+09	NLV	NLV	ID	NLV	NLV	ID	NLV	8.8E+08	1.5E+08	NLV	3.50E+05	1.90E+05	7.8E+08
Ambient Air Particulate			6.2E+09	1.0E+09	2.9E+10	ID	1.9E+06	ID	ID	3.5E+08	ID	ID	4.1E+09	4.1E+09	ID	8.8E+07	2.9E+06	2.9E+09
		55 i Sij	200000			0.0000000000000000000000000000000000000	8,000	100000000000000000000000000000000000000	8.00E+05	7.0E+06	8.0E+06	8,000		8.7E+07	80,000		5.2E+06	
Direct Contact (Nonres	2ct Contact (Nonres DC) 1.3E+08 5.2E+06 7.3E+08 80,000 8,000 8,000 8,000 8,000 8,00E+05 7.0E+06 8,0E+06 8,000 1.3E+08 8.7E+07 80,000 5.2E+07 5.2E+06 8.4E+07 Screening Levels (µg/Kg)																	
0-11-0-4		-1- (04)	1				_			1	T							
Soil Saturation Concen	itration Screening Lev	reis (Csat)	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Criterion/RBSL Exceeded

BOLD Value Exceeds Applicable Criterion/RBSL
bgs Below Ground Surface (feet)
MDL Laboratory method detection limit (MDL)
NA Not Applicable
NL Not Listed
NLL Not Likely to Leach
NLV Not Likely to Volatilize
ID Insufficient Data

TABLE 3A SUMMARY OF 2015/2016 SOIL ANALYTICAL RESULTS PCBs AND METALS 1600 WEST EIGHT MILE ROAD, FERNDALE, MICHIGAN PM PROJECT #01-6124-1-0001

POLYCHLORIN	POLYCHLORINATED BIPHENYLS (PCBs) AND METALS (μg/Kg) Chemical Abstract Service Number (CAS#) Sample ID Sample Date Sample Depth				Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver	Zinc
Chemical	I Abstract Service Num	ber (CAS#)	1336363	7440382	7440393	7440439	16065831	7440508	7439921	7439976	7782492	7440224	7440666
	707001000000000000000000000000000000000		PCBs	7 1 10002	1110000	7110100	10000001		Ten Metals	7 100070	1102102	THOLET	7.1.0000
. 373		(feet bgs)									1		
SB-1 SB-2	12/8/2015	5.0-6.0	<330	2,560	67,900	<200	11,300	9,980	5,760	<50	<400	<200	26,700
SB-3R	12/8/2015 3/1/2016	3.0-4.0 3.0-4.0	<330 <330	3,260 5,220	42,500 NA	210 NA	12,000 NA	15,800 NA	13,800 125,000	67 76	<400 NA	<200 NA	45,400 NA
SB-4	12/8/2015	1.0-2.0	<330	2,140	33,900	610	19,800	7,260	35,900	115	<400	<200	37,100
SB-5	12/8/2015	1.0-2.0	<330	1,480	18,000	220	2,620	1,670	6,550	<50	<400	<200	13,600
SB-7	12/8/2015	8.0-9.0	<330	210	9,310	<200	1,220	1,390	1,370	<50	<400	<200	3,180
SB-8	12/8/2015	1.0-2.0	<330	450	10,800	<200	2,080	1,750	3,890	65	<400	<200	4,030
SB-9	12/8/2015	1.0-2.0	<330	970	23,600	410	4,840	5,240	26,100	87.8	<400	<200	27,300
SB-10	12/8/2015	1.0-2.0	<330	340	7,030	<200	2,370	2,640	7,850	<50	<400	310	12,900
SB-11	12/8/2015	1.0-2.0	<330	2,590	61,900	360	6,130	13,900	61,300	645	<400	<200	49,100
A-9			<330	2,050	40,900	330	3,540	8,210	38,500	142	<400	<200	84,700
SB-12 SB-13	12/7/2015	1.0-2.0	<330	<200	9,630	<200	940	<500	3,260	<50	<400	<200	2,170
SB-13 SB-14	12/7/2015 12/7/2015	1.0-2.0 1.0-2.0	<330 <330	270 1,940	3,750 24,700	<200 270	930 6,110	<500 5,390	1,460 27,200	54.7 414	<400 <400	<200 <200	2,270 32,400
SB-14 SB-15	12/7/2015	1.0-2.0	<330	1,940 580	9,230	<200	2,070	2,030	4,810	414 <50	<400	<200	7,530
SB-16	12/7/2015	1.0-2.0	<330	860	16,500	300	2,640	4,350	57,700	762	<400	<200	29,200
SB-17	12/7/2015	1.0-2.0	<330	1,060	29,600	290	4,020	6,200	23,300	291	<400	<200	38,500
SB-18	10/7/0015	7000	<330	2,580	49,500	440	8,770	10,600	65,200	628	<400	<200	80,500
A-3	12/7/2015	7.0-8.0	<330	2,400	54,700	420	6,430	9,030	56,400	394	<400	<200	93,200
SB-19	12/7/2015	1.0-2.0	<330	1,130	19,700	<200	4,290	5,010	10,100	<50	<400	<200	13,200
SB-20	12/7/2015	1.0-2.0	<330	510	10,800	<200	2,680	2,650	5,050	<50	<400	<200	6,170
SB-21	12/8/2015	8.0-9.0	<330	1,790	43,300	220	6,360	9,220	26,700	<50	<400	<200	32,400
SB-22	3/1/2016	3.0-4.0	<330	5,580	NA	NA	NA	NA	145,000	621	NA	NA	NA
SB-23	3/1/2016	4.0-5.0	<330	2,480	NA	NA	NA	NA	52,500	84	NA	NA	NA
SB-24 SB-25	3/1/2016	3.0-4.0	<330	1,930	NA NA	NA NA	NA NA	NA NA	21,200	102	NA NA	NA	NA NA
SB-25 SB-26	3/1/2016	4.0-5.0	<330	20,800	NA NA	NA NA	NA NA	NA NA	207,000	64	NA NA	NA NA	NA NA
SB-27	3/1/2016 3/1/2016	2.0-3.0 4.0-5.0	<330 <330	810 6,580	NA NA	NA NA	NA NA	NA NA	28,200 223,000	<50 662	NA NA	NA NA	NA NA
SB-28	3/1/2016	3.0-4.0	<330	3,510	NA NA	NA NA	NA NA	NA NA	7,360	<50	NA NA	NA NA	NA NA
SB-29	3/1/2016	1.0-2.0	<330	6,980	NA NA	NA NA	NA NA	NA NA	7,490	<50	NA NA	NA	NA NA
SB-30	3/1/2016	8.0-9.0	<330	NA	NA NA	NA	NA NA	NA	NA	NA	NA	NA	NA
SB-31	3/1/2016	7.0-8.0	<330	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
SB-32	3/1/2016	8.0-9.0	<330	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
		bles 2 and 3: Residentia	l and Non-Res	idential Part 2	01 Generic Cl Residentia	eanup Criteri		ng Levels/Par					
Statewide Default Back			NA	5,800	75,000	1,200	18,000	32,000	21,000	130	410	1,000	47,000
Drinking Water Protect			NLL	4,600	1.30E+06	6,000	30,000	5.80E+06	7.00E+05	1,700	4,000	4,500	2.40E+06
Groundwater Surface \		and the first of t	NLL	4,600	8.2E+05 {G}	5,600 {G,X}	4.8E+09 {G}	1.2E+05 (G)	5.2E+06 {G,X}	50 (M); 1.2	400	100 (M); 27	2.7E+05 {G}
Soil Volatilization to Inc			3.0E+06	NLV	NLV	NLV	NLV	NLV	NLV	48,000	NLV	NLV	NLV
Ambient Air Infinite So			2.40E+05	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV
Ambient Air Finite VSI			7.9E+06	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV
Ambient Air Finite VSI			7.9E+06	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV
Ambient Air Particulate		SI)	5.2E+06	7.20E+05	3.30E+08	1.70E+06	2.60E+05	1.30E+08	1.00E+08	2.00E+07	1.30E+08	6.70E+06	ID
Direct Contact (Res DC	ن)		{T}	7,600	3.70E+07	5.50E+05	2.50E+06	2.00E+07	4.00E+05	1.60E+05	2.60E+06	2.50E+06	1.70E+08
Dainking Meter Deci	Name (Names BAS)		T ,		Nonresident	T		F 00=	7.00=	,			5.00=
Drinking Water Protect		C\/II\	NLL 4.05.07	4,600	1.30E+06	6,000	30,000	5.80E+06	7.00E+05	1,700	4,000	4,500	5.00E+06
Soil Volatilization to Inc Ambient Air Infinite So		•	1.6E+07	NLV	NLV NLV	NLV	NLV	NLV NLV	NLV	89,000	NLV NLV	NLV	NLV
Ambient Air Finite VSI			8.10E+05 2.8E+07	NLV NLV	NLV NLV	NLV NLV	NLV NLV	NLV NLV	NLV NLV	62,000 62,000	NLV NLV	NLV NLV	NLV NLV
Ambient Air Finite VSI			2.8E+07	NLV NLV	NLV NLV	NLV NLV	NLV NLV	NLV NLV	NLV NLV	62,000	NLV NLV	NLV NLV	NLV NLV
Ambient Air Particulate		DOWN THE WAY TO BE	6.5E+06	9.10E+05	1.50E+08	2.20E+06	2.40E+05	5.90E+07	4.40E+07	8.80E+06	5.90E+07	2.90E+06	ID
Direct Contact (Nonres			6.5E+06 {T}	37,000	1.30E+08	2.20E+06 2.10E+06	9.20E+06	7.30E+07	9.0E+5 (DD)	5.80E+05	9.60E+06	9.00E+06	6.30E+08
co. contact (Nonres	01		111	31,000	Screening Le		J.ZUE*00	1.30E*01	J.UE*J (DD)	J.80E*05	J.00E*00	J.JUE *U0	U.JUE+U0

Screening Levels (µg/Kg)

NA NA NA

NA

Criterion/RBSL Exceeded

Criterion/RBSL Exceeded

Value Exceeds Applicable Criterion/RBSL
Below Ground Surface (feet)
Laboratory method detection limit (MDL)
NA Not Applicable
NL Not Listed
NLL Not Likely to Leach
NLV Not Likely to Volatilize
ID Insufficient Data

Soil Saturation Concentration Screening Levels (Csat)

{G} Metal GSIP Criteria for Surface Water Not Protected for Drinking Water Use based on 269 mg/L CaCO3 Hardness: Station ID 500011, Red Run Drain, near Warren, Ml.

NA NA NA NA NA

TABLE 3A SUMMARY OF 2015/2016 SOIL ANALYTICAL RESULTS PCBs AND METALS 1600 WEST EIGHT MILE ROAD, FERNDALE, MICHIGAN PM PROJECT #01-6124-1-0001

POLYCHLORINA	POLYCHLORINATED BIPHENYLS (PCBs) AND METALS (μg/Kg)				ш	Cadmium	Chromium	er	g	Kur	Selenium	-	9
	4		PCBs	Arsenic	Barium	튱	ρ Ε	Copper	Lead	Mercury	e	Silver	Zinc
	(µg/Kg)			∢	Δ.	ర	ర్	0	_	Σ	S S	0,	5007
Chemical	Abstract Service Num	ber (CAS#)	1336363	7440382	7440393	7440439	16065831	7440508	7439921	7439976	7782492	7440224	7440666
Sample ID	Sample Date	Sample Depth	PCBs						Ten Metals				
	•	(feet bgs)		50 to 200			77.77.00			80200			
SB-1	10/4/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-2	10/4/2012	8.0-10.0	NS	540	4,200	<mdl< th=""><th>3,400</th><th>2,700</th><th>2,700</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>8,000</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	3,400	2,700	2,700	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>8,000</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>8,000</th></mdl<></th></mdl<>	<mdl< th=""><th>8,000</th></mdl<>	8,000
SB-3	10/4/2012	10.0-12.0	<mdl< th=""><th>11,000</th><th>19,000</th><th><mdl< th=""><th>4,900</th><th>4,000</th><th>9,800</th><th>50</th><th>220</th><th><mdl< th=""><th>18,000</th></mdl<></th></mdl<></th></mdl<>	11,000	19,000	<mdl< th=""><th>4,900</th><th>4,000</th><th>9,800</th><th>50</th><th>220</th><th><mdl< th=""><th>18,000</th></mdl<></th></mdl<>	4,900	4,000	9,800	50	220	<mdl< th=""><th>18,000</th></mdl<>	18,000
SB-4	10/4/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-5	10/4/2012	10.0-12.0	NS	NS	NS	NS	NS	NS NS	NS	NS	NS NS	NS	NS NO
SB-6	10/4/2012	10.0-12.0	NS	NS	NS 7.000	NS	NS 0.400	NS 4.000	NS	NS	NS	NS	NS 0.000
SB-7 SB-8	10/4/2012	10.0-12.0	<mdl< th=""><th>380</th><th>7,600</th><th><mdl< th=""><th>3,400</th><th>1,300</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>9,800</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	380	7,600	<mdl< th=""><th>3,400</th><th>1,300</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>9,800</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	3,400	1,300	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>9,800</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>9,800</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>9,800</th></mdl<></th></mdl<>	<mdl< th=""><th>9,800</th></mdl<>	9,800
SB-8 SB-9	10/4/2012	10.0-12.0	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NC
SB-9 SB-10	10/4/2012	10.0-12.0	NS NS	NS NC	NS	NS NS	NS	NS NS	NS NS	NS	NS NS	NS NS	NS NC
SB-10 SB-11	10/4/2012 10/5/2012	10.0-12.0 10.0-12.0	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
SB-11	10/5/2012	10.0-12.0	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
SB-12 SB-14	10/5/2012	10.0-12.0	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
SB-14 SB-16	10/5/2012	10.0-12.0	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS
SB-17	10/5/2012	10.0-12.0	NS NS	340	6,900	<mdl< th=""><th>3,300</th><th>1,400</th><th>1,800</th><th><mdl< th=""><th>260</th><th><mdl< th=""><th>9,200</th></mdl<></th></mdl<></th></mdl<>	3,300	1,400	1,800	<mdl< th=""><th>260</th><th><mdl< th=""><th>9,200</th></mdl<></th></mdl<>	260	<mdl< th=""><th>9,200</th></mdl<>	9,200
SB-18	10/5/2012	6.0-8.0	NS	NS NS	NS	NS	NS NS	NS NS	NS	NS	NS NS	NS	NS
SB-19	10/5/2012	8.0-10.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-20	10/5/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-21	10/5/2012	10.0-12.0	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
SB-22	10/5/2012	8.0-10.0	<mdl< th=""><th>420</th><th>12,000</th><th><mdl< th=""><th>4,500</th><th>3,900</th><th>3,800</th><th>1.9</th><th>260</th><th><mdl< th=""><th>12,000</th></mdl<></th></mdl<></th></mdl<>	420	12,000	<mdl< th=""><th>4,500</th><th>3,900</th><th>3,800</th><th>1.9</th><th>260</th><th><mdl< th=""><th>12,000</th></mdl<></th></mdl<>	4,500	3,900	3,800	1.9	260	<mdl< th=""><th>12,000</th></mdl<>	12,000
SB-23	10/5/2012	8.0-10.0	<mdl< th=""><th>690</th><th>5,000</th><th><mdl< th=""><th>3,600</th><th>3,500</th><th>3,200</th><th><mdl< th=""><th>350</th><th><mdl< th=""><th>9,300</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	690	5,000	<mdl< th=""><th>3,600</th><th>3,500</th><th>3,200</th><th><mdl< th=""><th>350</th><th><mdl< th=""><th>9,300</th></mdl<></th></mdl<></th></mdl<>	3,600	3,500	3,200	<mdl< th=""><th>350</th><th><mdl< th=""><th>9,300</th></mdl<></th></mdl<>	350	<mdl< th=""><th>9,300</th></mdl<>	9,300
SB-24	10/8/2012	8.0-10.0	<mdl< th=""><th>560</th><th>9,700</th><th><mdl< th=""><th>3,600</th><th>2,000</th><th>2,800</th><th><mdl< th=""><th>400</th><th><mdl< th=""><th>9,700</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	560	9,700	<mdl< th=""><th>3,600</th><th>2,000</th><th>2,800</th><th><mdl< th=""><th>400</th><th><mdl< th=""><th>9,700</th></mdl<></th></mdl<></th></mdl<>	3,600	2,000	2,800	<mdl< th=""><th>400</th><th><mdl< th=""><th>9,700</th></mdl<></th></mdl<>	400	<mdl< th=""><th>9,700</th></mdl<>	9,700
SB-25	10/8/2012	10.0-12.0	<mdl< th=""><th>700</th><th>6,600</th><th><mdl< th=""><th>2,900</th><th>2,600</th><th>7,900</th><th><mdl< th=""><th>220</th><th><mdl< th=""><th>7,900</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	700	6,600	<mdl< th=""><th>2,900</th><th>2,600</th><th>7,900</th><th><mdl< th=""><th>220</th><th><mdl< th=""><th>7,900</th></mdl<></th></mdl<></th></mdl<>	2,900	2,600	7,900	<mdl< th=""><th>220</th><th><mdl< th=""><th>7,900</th></mdl<></th></mdl<>	220	<mdl< th=""><th>7,900</th></mdl<>	7,900
SB-26	10/8/2012	12.0-14.0	NS	NS	NS	NS	NS	NS	NS	NS	NA	NS	NS
SB-27	10/8/2012	10.0-12.0	<mdl< th=""><th>630</th><th>11,000</th><th><mdl< th=""><th>5,200</th><th>3,100</th><th>12,000</th><th>8.4</th><th>320</th><th><mdl< th=""><th>13,000</th></mdl<></th></mdl<></th></mdl<>	630	11,000	<mdl< th=""><th>5,200</th><th>3,100</th><th>12,000</th><th>8.4</th><th>320</th><th><mdl< th=""><th>13,000</th></mdl<></th></mdl<>	5,200	3,100	12,000	8.4	320	<mdl< th=""><th>13,000</th></mdl<>	13,000
SB-28	10/8/2012	10.0-12.0	NS	220	5,500	<mdl< th=""><th>3,200</th><th>870</th><th><mdl< th=""><th><mdl< th=""><th>300</th><th><mdl< th=""><th>9,800</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	3,200	870	<mdl< th=""><th><mdl< th=""><th>300</th><th><mdl< th=""><th>9,800</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>300</th><th><mdl< th=""><th>9,800</th></mdl<></th></mdl<>	300	<mdl< th=""><th>9,800</th></mdl<>	9,800
SB-29	10/8/2012	10.0-12.0	NS	2,000	13,000	<mdl< th=""><th>4,800</th><th>4,400</th><th>7,000</th><th>0.8</th><th>350</th><th><mdl< th=""><th>21,000</th></mdl<></th></mdl<>	4,800	4,400	7,000	0.8	350	<mdl< th=""><th>21,000</th></mdl<>	21,000
SB-30	10/8/2012	10.0-12.0	NS	240	8,500	<mdl< th=""><th>5,100</th><th>5,500</th><th>3,300</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,000</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	5,100	5,500	3,300	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>14,000</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>14,000</th></mdl<></th></mdl<>	<mdl< th=""><th>14,000</th></mdl<>	14,000
HA1	10/8/2012	8.0	NS	1,300	13,000	<mdl< th=""><th>7,200</th><th>3,800</th><th>5,600</th><th>5.6</th><th><mdl< th=""><th><mdl< th=""><th>18,000</th></mdl<></th></mdl<></th></mdl<>	7,200	3,800	5,600	5.6	<mdl< th=""><th><mdl< th=""><th>18,000</th></mdl<></th></mdl<>	<mdl< th=""><th>18,000</th></mdl<>	18,000
HA2	10/8/2012	8.0	NS	1,300	9,900	<mdl< td=""><td>6,200</td><td>3,600</td><td>6,500</td><td>8.8</td><td><mdl< td=""><td><mdl< td=""><td>12,000</td></mdl<></td></mdl<></td></mdl<>	6,200	3,600	6,500	8.8	<mdl< td=""><td><mdl< td=""><td>12,000</td></mdl<></td></mdl<>	<mdl< td=""><td>12,000</td></mdl<>	12,000
HA3	10/8/2012	8.0	NS	1,900	24,000	<mdl< td=""><td>8,200</td><td>6,200</td><td>17,000</td><td>15</td><td>320</td><td><mdl< td=""><td>33,000</td></mdl<></td></mdl<>	8,200	6,200	17,000	15	320	<mdl< td=""><td>33,000</td></mdl<>	33,000
HA4	10/8/2012	8.0	NS	3,200	11,000	<mdl< th=""><th>5,300</th><th>5,200</th><th>7,000</th><th>38</th><th>380</th><th><mdl< th=""><th>38,000</th></mdl<></th></mdl<>	5,300	5,200	7,000	38	380	<mdl< th=""><th>38,000</th></mdl<>	38,000
			Cleanup C	ritoria Poguira	mente for De	enonee Activ	ity (R 299.1 - F	200 501	72				
Generic Sc	il Cleanup Criteria Ta	bles 2 and 3: Residentia							t 213 Risk-Ba	sed Screening	Levels, Dece	ember 30, 201	3
N-094 (1-50000), 1-1-1					D1-1	1 (1500 d 1500 a 150 e 1846 e 1800						
Otatanida Basada Barat					Residentia								
Statewide Default Back			NA	5,800	75,000	1,200	18,000	32,000	21,000	130	410	1,000	47,000
Drinking Water Protecti		Non (COID)	NLL	4,600	1.30E+06	6,000	30,000	5.80E+06	7.00E+05	1,700	4,000	4,500	2.40E+06
Groundwater Surface V			NLL	4,600	8.2E+05 {G}	5,600 {G,X}	4.8E+09 {G}	1.2E+05 {G}	5.2E+06 {G,X}	50 (M); 1.2	400	100 (M); 27	2.7E+05 {G}
Soil Volatilization to Inc			3.0E+06	NLV	NLV	NLV	NLV	NLV	NLV	48,000	NLV	NLV	NLV
Ambient Air Infinite Sou			2.40E+05	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV
Ambient Air Finite VSI f		0.0000000000000000000000000000000000000	7.9E+06	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV
Ambient Air Finite VSI f	authorized to be an income	SPECIAL CONTRACTOR CON	7.9E+06	NLV	NLV	NLV	NLV	NLV	NLV	52,000	NLV	NLV	NLV ID
Ambient Air Particulate		751)	5.2E+06	7.20E+05	3.30E+08	1.70E+06	2.60E+05	1.30E+08	1.00E+08	2.00E+07	1.30E+08	6.70E+06	ID
Direct Contact (Res DC)		{T}	7,600	3.70E+07	5.50E+05	2.50E+06	2.00E+07	4.00E+05	1.60E+05	2.60E+06	2.50E+06	1.70E+08
Drinking Water Beat and	ion (Nonros DIAD)		L	4.000	Nonresident		20.000	F 005 - 22	7.005.05	4 700	4.000	4.500	E 00E : 22
Drinking Water Protecti		amraa CV/IIV	NLL 4.05+07	4,600	1.30E+06	6,000	30,000	5.80E+06	7.00E+05	1,700	4,000	4,500	5.00E+06
Soil Volatilization to Inc			1.6E+07	NLV	NLV	NLV	NLV	NLV	NLV	89,000	NLV	NLV	NLV
Ambient Air Infinite Sou	1970 CARROLL SCHOOL 2010 CARROLL		8.10E+05	NLV	NLV	NLV	NLV	NLV	NLV	62,000	NLV	NLV	NLV
Ambient Air Finite VSI f		S1 C 1300 S 1300 S 130 S	2.8E+07	NLV	NLV	NLV	NLV	NLV	NLV	62,000	NLV	NLV	NLV
Ambient Air Finite VSI 1	000000000 NO NO NO NO	0.000000	2.8E+07	NLV	NLV	NLV	NLV	NLV	NLV	62,000	NLV	NLV	NLV
Ambient Air Particulate		es PSI)	6.5E+06	9.10E+05	1.50E+08	2.20E+06	2.40E+05	5.90E+07	4.40E+07	8.80E+06	5.90E+07	2.90E+06	ID
Direct Contact (Nonres	DC)		{T}	37,000	1.30E+08	2.10E+06	9.20E+06	7.30E+07	9.0E+5 (DD)	5.80E+05	9.60E+06	9.00E+06	6.30E+08
Cail Caturation Comme	tration Screening Lev	olo (Coot)	I NA	l NA	Screening Le	veis (µg/Kg)		NA.	NA.	A14	N	l NA	N/A

Criterion/RBSL Exceeded

BOLD Value Exceeded SApplicable Criterion/RBSL Below Ground Surface (feet)
MDL Laboratory method detection limit (MDL)
NA Not Applicable
NL Not Listed
NLL Not Likely to Leach
NLV Not Likely to Volatilize
ID Insufficient Data

Soil Saturation Concentration Screening Levels (Csat)

NA

NA NA NA

NA NA NA NA NA NA

{G} Metal GSIP Criteria for Surface Water Not Protected for Drinking Water Use based on

269 mg/L CaCO3 Hardness: Station ID 500011, Red Run Drain, near Warren, MI.

TABLE 4A SUMMARY OF 2015/2016 GROUNDWATER ANALYTICAL RESULTS VOCS 1600 WEST EIGHT MILE ROAD, FERNDALE, MICHIGAN PM PROJECT #01-6124-1-0001

	VOLATILE ORGANIC (με	a/L)		Benzene	Chlorobenzene	Chloroethane	1,1-Dichloroethane	1,2-Dichloroethane	1,1-Dichloroethylene	cis-1,2-Dichloroethylene	trans-1,2- Dichloroethylene	2-Methylnaphthalene	Naphthalene	1,1,2,2- Tetrachloroethane	Tetrachloroethylene	1,1,2-Trichloroethane	Trichloroethylene	Trichlorofluoromethane	Vinyl chloride	1,2-Dichlorobenzene	1,3-Dichlorobenzene	1,4-Dichlorobenzene	Other VOCs
	Chemical Abstract Se	Screen Depth	Depth to Groundwater	71432	108907	75003	75343	107062	75354	156592	156605	91576	91203	79345	127184	79005	79016	75694	75014	95501	541731	106467	Various
Sample ID	Sample Date	(feet bgs)	(feet bgs)										VC)Cs									
TMW-3	12/8/2015	9.0-14.0	9.27	4	49	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-3R	3/1/2016	7.0-12.0	8.80	<1	17	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-4	12/8/2015	7.4-12.4	8.52	<1	<1	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-5	12/8/2015	7.2-12.2	8.38	<1	<1	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-6	12/8/2015	7.1-12.1	7.99	<1	<1	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-7	12/8/2015	7.4-12.4	8.96	<1	<1	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-8	12/8/2015	9.8-14.8	11.04 9.78	<1	<1	<5 <5	<1	<1	<1	<1	<1	<5 <5	<5 <5	<1	1	<1	<1	<1	<1	36	<1	14	<mdl< td=""></mdl<>
TWM-8R TMW-9	3/1/2016 12/8/2015	7.5-12.5 8.1-13.1	9.78	<1 <1	<1	<5 <5	<1 <1	<1 <1	<1	<1 <1	<1 <1	<5 <5	<5 <5	<1 <1	1 <1	<1 <1	1 <1	<1	<1 <1	14 <1	<1	7 <1	<mdl< td=""></mdl<>
TMW-10	12/8/2015	7.0-12.0	7.60	<1	<1	<5	<1	<1	<1	<1	<1	<5 <5	<5 <5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-11	MANNER M. C. PROLITO CONT.	April 6000-0-1	20.000	<1	<1	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
A-8	12/8/2015	8.9-13.9	9.42	<1	<1	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-12	12/7/2015	8.2-13.2	9.67	<1	<1	<5	<1	<1	<1	<1	<1	<5	<5	<1	2	<1	<1	2	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-13	12/7/2015	9.3-14.3	10.32	<1	<1	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-14	12/7/2015	8.1-13.1	9.36	<1	<1	6	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	2	2	<1	<1	<1	<mdl< td=""></mdl<>
TMW-16	12/7/2015	8.9-13.9	9.71	<1	<1	<5	<1	<1	<1	<1	<1	<5	<5	<1	35	<1	<1	8	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-18 A-4	12/7/2015	9.1-14.1	10.50	<1 <1	<1 <1	<5 <5	<1 <1	<1 <1	2 2	<1 <1	<1 <1	<5 <5	<5 <5	<1 <1	17 17	<1 <1	<1 <1	46 47	<1 <1	<1 <1	<1 <1	<1 <1	<mdl <mdl< td=""></mdl<></mdl
TMW-19	12/7/2015	8.3-13.3	9.94	<1	<1	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	2	2	1	<mdl< td=""></mdl<>
TMW-20	12/7/2015	9.6-14.6	10.93	<1	<1	<5	<1	<1	2	<1	<1	<5	<5	<1	<1	<1	<1	2	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-22	3/1/2016	7.3-12.3	8.68	<1	15	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	4	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-23	3/1/2016	7.6-12.6	7.98	<1	5	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-24	3/1/2016	7.4-12.4	8.64	<1	20	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-25	3/1/2016	4.6-9.6	5.75	<1	<1	<5	<1	<1	<1	4	1	<5	<5	<1	<1	<1	2	<1	2	<1	<1	<1	<mdl< td=""></mdl<>
TMW-26	3/1/2016	8.5-13.5	10.22	<1	<1	<5	<1	1	<1	<1	<1	<5	<5	4	<1	7	20	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-27	3/1/2016	6.2-11.2	7.24	<1	<1	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
TMW-30	3/1/2016	9.2-14.2	11.06	<1	<1	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	14	<1	<1	<1	<1	<mdl< td=""></mdl<>
TWM-31	3/1/2016	8.8-13.8	10.76	<1	3	<5	<1	<1	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	<1	1	3	<mdl< td=""></mdl<>
TMW-32	3/1/2016	8.6-13.6	10.88	<10	50	<50	<10	<10	<10	<10	<10	150	110	<10	<10	<10	<10	<10	<10	<10	<10	<10	<mdl< td=""></mdl<>
MW-A (MW-7)	12/8/2015	Unknown	13.58	<1	<1	<5	<1	2	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
MW-B (MW-11)	12/8/2015	Unknown	9.80	<1	<1	<5	2	7	<1	<1	<1	<5	<5	<1	<1	<1	<1	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
MW-9	3/1/2016	Unknown	9.80	<1	<1	<5	<1	<1	<1	<1	<1	<5	<5 -5	<1	<1	<1	2	<1	<1	<1	<1	<1	<mdl< td=""></mdl<>
MW-10	3/1/2016	Unknown	11.60 20.04	<1	<1	<5	<1 <1	<1 <1	<1	<1 <1	<1 <1	<5	<5 <5	<1	<1	<1 <1	10	<1	<1	<1	<1	<1 <1	<mdl< td=""></mdl<>
MW-C (2015) MW-D (MW-12)	12/8/2015 12/8/2015	Unknown Unknown	11.41	<1 <1	<1 <1	<5 <5	<1	<1	<1	<1	<1	<5 <5	<5	<1 <1	<1 <1	<1	<1	<1 <1	<1 <1	<1 <1	<1 <1	<1	<mdl< td=""></mdl<>
2 (12)	12.02010	•	Groundwater Cleanup C	riteria Tabl	e 1: Reside	Clea ential and N	nup Criteri on-Resider	a Requirem ntial Part 20	ents for Re 1 Generic C	sponse Act leanup Cri	ivity (R 299 teria and Se	.1 - R 299.5 creening Le	50) evels/Part 2	13 Risk-Ba	sed Screeni	ing Levels,	December			300			
								Reside	ential/Nonre	sidential (µ	g/L)												
Residential Drinking W	ater (Res DW)			5.0 {A}	100 {A}	430	880	5.0 {A}	7.0 {A}	70 (A)	100 {A}	260	520	8.5	5.0 {A}	5.0 {A}	5.0 {A}	2,600	2.0 {A}	600 {A}	6.6	75 {A}	Various
Nonresidential Drinking	g Water (Nonres DW)			5.0 {A}	100 {A}	1,700	2,500	5.0 {A}	7.0 {A}	70 (A)	100 {A}	750	1,500	35	5.0 (A)	5.0 {A}	5.0 (A)	7,300	2.0 (A)	600 {A}	19	75 {A}	Various
Groundwater Surface V	ndwater Surface Water Interface (GSI)					1,100 {X}	740	360 {X}	130	620	1,500 {X}	19	11	78 {X}	60 {X}	330 {X}	200 {X}	NA	13 {X}	13	28	17	Various
Residential Groundwat	er Volatilization to Ind	loor Air Inhalation (Re	es GVII) ²	5,600	2.10E+05	5.7E+6 {S}	1.00E+06	9,600	200	93,000	85,000	25,000 {S}	31,000 {S}	12,000	25,000	17,000	2,200	1.1E+6 {S}	1,100	1.6E+5 {S}	ID	16,000	Various
Nonresidential Ground	water Volatilization to	4.7E+5 {S}	5.7E+6 {S}	2.30E+06	59,000	1,300 creening Le	2.10E+05	2.00E+05	25,000 {S}	31,000 {S}	77,000	1.70E+05	1.10E+05	4,900	1.1E+6 {S}	13,000	1.6E+5 {S}	ID	74,000 {S}	Various			
Residential Groundwat	er Vapor Intrusion Sci	27	1,100	44,000	4,300	41	370	83	360	940	240	59	94	96	9.8	28,000	2.8	7,600	55	76	Various		
	esidential Groundwater Vapor Intrusion Screening Levels (GW _{VI-res}) ³					1.80E+05	18,000	210	1,600	350	1,500	3,900	1,200	300	460	480	41	1.20E+05	52	32,000	230	380	Various
Water Solubility					4,600 4.72E+05	5.74E+06	5.06E+06	8.52E+06	2.25E+06	3.50E+06	6.30E+06	25,000	31,000	2.97E+06	2.00E+05	4.42E+06	1.10E+06	1.10E+06	2.76E+06	1.56E+05	1.11E+05	74,000	Various
Flammability and Explo	osivity Screening Leve		1.75E+06 68,000	1.60E+05	1.10E+05	3.80E+05	2.50E+06	97,000	5.30E+05	2.30E+05	ID	NA NA	ID	ID	NA NA	ID	ID	33,000	NA NA	ID	NA NA	Various	

Criteria/RBSL Exceeded

BOLD Value Exceeds Applicable Criteria

bgs Below Ground Surface (feet)

ND Not detected at levels above the laboratory Method Detection Limit (MDL) or Minimum Quantitative Level (MQL)

Rule 323.1057 of Part 4 Water Quality Standards

² Tier 1 GVII Criteria based on 3 meter (or greater) groundwater depth

³ (2013 Vapor Intrusion Guidance) Screening Levels based on depth to groundwater less than 1.5 meters and not in contact with building foundation

NA Not Applicable

NL Not Listed

NLL Not Likely to Leach

NLV Not Likely to Volatilize

ID Insufficient Data

TABLE 4B SUMMARY OF 2015/2016 GROUNDWATER ANALYTICAL RESULTS SVOCS AND METALS 1600 WEST EIGHT MILE ROAD, FERNDALE, MICHIGAN PM PROJECT #01-6124-1-0001

SEMI-VOL	SEMI-VOLATILE ORGANIC COMPOUNDS (SVOCs) AND METALS (µg/L) Chemical Abstract Service Number (CAS#)					Naphthalene	Phenanthrene	2-Methylnaphthalene	SVOCs/PNAs	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver	Zinc
	Chemical Abstract Se	ervice Number (CAS#)	83329	86737	91203	85018	91576	Various	7440382	7440393	7440439	16065831	7440508	7439921	7439976	7782492	7440224	7440666
Sample ID	Sample Date	Screen Depth (feet bgs)	Depth to Groundwater (feet bgs)			svoc	s/PNAs					,		Michigan ⁻	Ten Metals				
TMW-3	12/8/2015	9.0-14.0	9.27	<5	<5	<5	<2	<5	<mdl< td=""><td>18</td><td>228</td><td><0.5</td><td><5</td><td><5</td><td><3</td><td><0.2</td><td><5</td><td><0.5</td><td>15</td></mdl<>	18	228	<0.5	<5	<5	<3	<0.2	<5	<0.5	15
TMW-3R	3/1/2016	7.0-12.0	8.80	<5	<5	<5	<2	<5	<mdl< td=""><td>5</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><3</td><td><0.2</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	5	NA	NA	NA	NA	<3	<0.2	NA	NA	NA
TMW-4	12/8/2015	7.4-12.4	8.52	<5	<5	<5	<2	<5	<mdl< td=""><td><2</td><td>32</td><td><0.5</td><td><5</td><td><5</td><td><3</td><td><0.2</td><td><5</td><td><0.5</td><td>11</td></mdl<>	<2	32	<0.5	<5	<5	<3	<0.2	<5	<0.5	11
TMW-5	12/8/2015	7.2-12.2	8.38	<5	<5	<5	<2	<5	<mdl< td=""><td><2</td><td>21</td><td><0.5</td><td><5</td><td><5</td><td><3</td><td><0.2</td><td><5</td><td><0.5</td><td>8</td></mdl<>	<2	21	<0.5	<5	<5	<3	<0.2	<5	<0.5	8
TMW-6	12/8/2015	7.1-12.1	7.99	<5	<5	<5	<2	<5	<mdl< td=""><td><2</td><td>38</td><td><0.5</td><td><5</td><td><5</td><td><3</td><td><0.2</td><td><5</td><td><0.5</td><td>13</td></mdl<>	<2	38	<0.5	<5	<5	<3	<0.2	<5	<0.5	13
TMW-7	12/8/2015	7.4-12.4	8.96	<5	<5	<5	<2	<5	<mdl< td=""><td><2</td><td>66</td><td><0.5</td><td><5</td><td><5</td><td><3</td><td><0.2</td><td><5</td><td><0.5</td><td>7</td></mdl<>	<2	66	<0.5	<5	<5	<3	<0.2	<5	<0.5	7
TMW-8	12/8/2015	9.8-14.8	11.04	<5	<5 NA	<5 NA	<2 NA	<5	<mdl< td=""><td><2</td><td>18</td><td><0.5</td><td><5 NA</td><td><5 NA</td><td><3</td><td><0.2</td><td><5 NA</td><td><0.5</td><td>14</td></mdl<>	<2	18	<0.5	<5 NA	<5 NA	<3	<0.2	<5 NA	<0.5	14
TWM-8R	3/1/2016	7.5-12.5	9.78	NA <5	NA -E	NA -F	NA <2	NA -F	NA MDI	NA <2	NA 47	NA <0.5	NA <5	NA <5	NA <3	NA <0.2	NA <5	NA <0.5	NA 14
TMW-9 TMW-10	12/8/2015 12/8/2015	8.1-13.1 7.0-12.0	9.34 7.60	<5 <5	<5 <5	<5 <5	<2 <2	<5 <5	<mdl< td=""><td><2</td><td>37</td><td><0.5</td><td><5 <5</td><td><5 <5</td><td><3</td><td><0.2</td><td><5 <5</td><td><0.5</td><td>14 26</td></mdl<>	<2	37	<0.5	<5 <5	<5 <5	<3	<0.2	<5 <5	<0.5	14 26
TMW-10		7.0-12.0	1.00	<5 <5	<5 <5	<5 <5	<2	<5 <5	<mdl< td=""><td><2</td><td>89</td><td><0.5</td><td><5 <5</td><td><5 <5</td><td><3</td><td><0.2</td><td><5 <5</td><td><0.5</td><td>48</td></mdl<>	<2	89	<0.5	<5 <5	<5 <5	<3	<0.2	<5 <5	<0.5	48
A-8	12/8/2015	8.9-13.9	9.42	<5	<5	<5 <5	<2	<5	<mdl< td=""><td><2</td><td>92</td><td><0.5</td><td><5 <5</td><td><5 <5</td><td><3</td><td><0.2</td><td><5 <5</td><td><0.5</td><td>50</td></mdl<>	<2	92	<0.5	<5 <5	<5 <5	<3	<0.2	<5 <5	<0.5	50
TMW-12	12/7/2015	8.2-13.2	9.67	<5	<5	<5	<2	<5	<mdl< td=""><td><2</td><td>154</td><td><0.5</td><td><5</td><td>8</td><td><3</td><td><0.2</td><td><5</td><td><0.5</td><td><5</td></mdl<>	<2	154	<0.5	<5	8	<3	<0.2	<5	<0.5	<5
TMW-13	12/7/2015	9.3-14.3	10.32	<5	<5	<5	<2	<5	<mdl< td=""><td><2</td><td>72</td><td><0.5</td><td><5</td><td>7</td><td><3</td><td><0.2</td><td><5</td><td><0.5</td><td>59</td></mdl<>	<2	72	<0.5	<5	7	<3	<0.2	<5	<0.5	59
TMW-14	12/7/2015	8.1-13.1	9.36	<5	<5	<5	<2	<5	<mdl< td=""><td>4</td><td>94</td><td><0.5</td><td><5</td><td><5</td><td><3</td><td><0.2</td><td><5</td><td><0.5</td><td><5</td></mdl<>	4	94	<0.5	<5	<5	<3	<0.2	<5	<0.5	<5
TMW-16	12/7/2015	8.9-13.9	9.71	<5	<5	<5	<2	<5	<mdl< td=""><td><2</td><td>129</td><td><0.5</td><td><5</td><td>14</td><td><3</td><td><0.2</td><td><5</td><td><0.5</td><td>5</td></mdl<>	<2	129	<0.5	<5	14	<3	<0.2	<5	<0.5	5
TMW-18	12/7/2015	04444	10.50	<5	<5	<5	<2	<5	<mdl< td=""><td><2</td><td>98</td><td><0.5</td><td><5</td><td>9</td><td><3</td><td><0.2</td><td><5</td><td><0.5</td><td>7</td></mdl<>	<2	98	<0.5	<5	9	<3	<0.2	<5	<0.5	7
A-4	12/7/2015	9.1-14.1	10.50	<5	<5	<5	<2	<5	<mdl< td=""><td><2</td><td>96</td><td><0.5</td><td><5</td><td>9</td><td><3</td><td><0.2</td><td><5</td><td><0.5</td><td>6</td></mdl<>	<2	96	<0.5	<5	9	<3	<0.2	<5	<0.5	6
TMW-19	12/7/2015	8.3-13.3	9.94	<5	<5	<5	<2	<5	<mdl< td=""><td><2</td><td>35</td><td><0.5</td><td><5</td><td><5</td><td><3</td><td><0.2</td><td><5</td><td><0.5</td><td>5</td></mdl<>	<2	35	<0.5	<5	<5	<3	<0.2	<5	<0.5	5
TMW-20	12/7/2015	9.6-14.6	10.93	<5	<5	<5	<2	<5	<mdl< td=""><td>3</td><td>144</td><td><0.5</td><td><5</td><td>19</td><td><3</td><td><0.2</td><td><5</td><td><0.5</td><td>7</td></mdl<>	3	144	<0.5	<5	19	<3	<0.2	<5	<0.5	7
TMW-22	03/01/2016	7.3-12.3	8.68	<5	<5	<5	<2	<5	<mdl< td=""><td><2</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><3</td><td><0.2</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	<2	NA	NA	NA	NA	<3	<0.2	NA	NA	NA
TMW-23	03/01/2016	7.6-12.6	7.98	<5	<5	<5	<2	<5	<mdl< td=""><td><2</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><3</td><td><0.2</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	<2	NA	NA	NA	NA	<3	<0.2	NA	NA	NA
TMW-24	03/01/2016	7.4-12.4	8.64	<5	<5	<5	<2	<5	<mdl< td=""><td>11</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><3</td><td><0.2</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	11	NA	NA	NA	NA	<3	<0.2	NA	NA	NA
TMW-25	03/01/2016	4.6-9.6	5.75	<5	<5	<5	<2	<5	<mdl< td=""><td>4</td><td>NA</td><td>NA</td><td>NA</td><td>NA</td><td><3</td><td><0.2</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	4	NA	NA	NA	NA	<3	<0.2	NA	NA	NA
TMW-26	03/01/2016	8.5-13.5	10.22	<5	<5	<5	<2	<5	<mdl< td=""><td><2</td><td>NA NA</td><td>NA</td><td>NA</td><td>NA</td><td><3</td><td><0.2</td><td>NA</td><td>NA</td><td>NA</td></mdl<>	<2	NA NA	NA	NA	NA	<3	<0.2	NA	NA	NA
TMW-27	03/01/2016	6.2-11.2	7.24	<5	<5	<5	<2	<5	<mdl< td=""><td>2</td><td>NA NA</td><td>NA</td><td>NA NA</td><td>NA NA</td><td><3</td><td><0.2</td><td>NA NA</td><td>NA NA</td><td>NA NA</td></mdl<>	2	NA NA	NA	NA NA	NA NA	<3	<0.2	NA NA	NA NA	NA NA
TMW-30 TWM-31	03/01/2016 03/01/2016	9.2-14.2 8.8-13.8	11.06 10.76	<5 <5	<5 <5	<5 <5	<2 <2	<5 <5	<mdl <mdl< td=""><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td></mdl<></mdl 	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
TMW-32	03/01/2016	8.6-13.6	10.88	5	6	71	9	112	<mdl< td=""><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td><td>NA NA</td></mdl<>	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MW-A (MW-7)	12/8/2015	Unknown	13.58	NA NA	NA NA	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MW-B (MW-11)	12/8/2015	Unknown	9.80	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MW-9	3/1/2016	Unknown	9.80	NA NA	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
MW-10	3/1/2016	Unknown	11.60	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-C (2015)	12/8/2015	Unknown	20.04	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
MW-D (MW-12)	12/8/2015	Unknown	11.41	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	Generic		up Criteria Table 1: Resid idance Document For Th	ential and N	lon-Reside	ntial Part 20 way, Policy	and Proce	Cleanup Cr dure Numb	iteria and S er: 09-017,	creening Le	evels/Part 2					0, 2013			
Residential Drinking Wa	ater (Dec DIA/)			1200	880	520	lential/Nonr	260		10 (4)	2,000 (4)	5.0 (4)	100 (4)	1,000 (5)	40.03	20141	50 (A)	34	2,400
100 0000 VOICE 10000 10000	CONTRACT CONTRACT CONTRACTOR			1300 3800	2,000 (S)			750	Various Various	10 (A)	2,000 (A)	5.0 (A)	100 (A)	1,000 (E)	4.0 (L)	2.0 (A)	50 (A)		
Nonresidential Drinking Groundwater Surface V				3800	2,000 (S) 12	1,500	150 2.0 (M); 1.4	750 19		10 {A} 10	2,000 {A}	5.0 {A}	100 (A)	1,000 {E}	4.0 {L}	2.0 {A} 0.0013	50 {A} 5.0	98 0.2 (M); 0.06	5,000 {E} 270 {G}
Residential Groundwater	20 1A 30 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	oor Air Inhalation (Day	e GVII\ 2	4,200 {S}	2,000 (S)	11 31,000 {S}	2.0 (M); 1.4 1,000 (S)	19 25,000 {S}	Various Various	NLV	1,300 {G} NLV	4.6 {G,X}	170 {G} NLV	21 {G} NLV	30 {G,X} NLV	0.0013 56 (S)	NLV	0.2 (M); 0.06 NLV	270 (G) NLV
Nonresidential Ground				4,200 {S} 4,200 {S}	2,000 (S)	31,000 {S} 31,000 {S}	1,000 {S}	25,000 {S} 25,000 {S}	Various	NLV NLV			_				NLV NLV	NLV NLV	NLV NLV
inomesiaeman Ground	rater voiatilization to i	masor Air innaiation ((Itolines Gvii) -	4,200 (3)	2,000 (3)		creening L			INLV	NLV	NLV	NLV	NLV	NLV	56 (S)	INLV	INLV	INL V
Residential Groundwate	ar Vanor Intrusion Son	eening Levels (GW) 3	55,000	71,000	240	110	940	Various	NL	NL	NL	NL	NL	NL	ID	NL	NL	NL
Nonresidential Ground				2.30E+05	3.0E+05	1,200	480	3,900	Various	NL NL	NL NL	NL NL	NL NL	NL NL	NL NL	ID	NL NL	NL NL	NL NL
Water Solubility		- vient/	4,200	300	31,000	1,000	25,000	Various	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	56	NA NA	NA NA	NA NA	
Flammability and Explo	sivity Screening Level		ID	2,000	NA.	ID	ID	Various	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID	

Criteria/RBSL Exceeded

BOLD Value Exceeds Applicable Criteria

bgs Below Ground Surface (feet)

MDL Laboratory Method Detection Limit (MDL)

Rule 323.1057 of Part 4 Water Quality Standards

² Tier 1 GVII Criteria based on 3 meter (or greater) groundwater depth

3 (2013 Vapor Intrusion Guidance) Screening Levels based on depth to groundwater less than 1.5 meters and not in contact with building foundation

4 (2013 Vapor Intrusion Guidance) Screening levels based on groundwater in contact with the building foundation or within a sump

NA Not Applicable

NL Not Listed

NLL Not Likely to Leach

NLV Not Likely to Volatilize

ID Insufficient Data

{G} Metal GSI Criteria for Surface Water Not Protected for Drinking Water Use based on 269 mg/L CaCO3 Hardness: Station ID 500011, Red Run Drain, near Warren, MI.

TABLE 5 SUMMARY OF 2015 GROUNDWATER ANALYTICAL RESULTS VOCs, SVOCs, AND METALS 1600 WEST EIGHT MILE ROAD, FERNDALE, MICHIGAN PM PROJECT #01-6124-1-0001

VOLATILE ORGANIC						1,2-Dichloroethane	Tetrachloroethylene	1,1,2-Trichloroethane	Trichloroethylene	1,2-Dichlorobenzene	Other VOCs	Diethyl Phthalate	Other SVOCs	Arsenic	Barium	Cadmium	Chromium	Copper	Lead	Mercury	Selenium	Silver	Zinc
	Chemical Abstract Se	ervice Number (CAS#)	108907	75343	107062	127184	79005	79016	95501	Various	84662	Various	7440382	7440393	7440439	16065831	7440508	7439921	7439976	7782492	7440224	7440666
Sample ID	Sample Date		Depth to Groundwater				VC	Cs				SV	OCs					Michigan 1	Ten Metals				
MW7	10/9/2012	(feet bgs) Not Reported	(feet bgs) Not Reported	<mdl< td=""><td><mdl< td=""><td>5.1</td><td><mdl< td=""><td>1.1</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>9.8</td><td>160</td><td><mdl< td=""><td>18</td><td>19</td><td>9.4</td><td><mdl< td=""><td>1.4</td><td><mdl< td=""><td>46</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>5.1</td><td><mdl< td=""><td>1.1</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>9.8</td><td>160</td><td><mdl< td=""><td>18</td><td>19</td><td>9.4</td><td><mdl< td=""><td>1.4</td><td><mdl< td=""><td>46</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	5.1	<mdl< td=""><td>1.1</td><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>9.8</td><td>160</td><td><mdl< td=""><td>18</td><td>19</td><td>9.4</td><td><mdl< td=""><td>1.4</td><td><mdl< td=""><td>46</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	1.1	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>9.8</td><td>160</td><td><mdl< td=""><td>18</td><td>19</td><td>9.4</td><td><mdl< td=""><td>1.4</td><td><mdl< td=""><td>46</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>9.8</td><td>160</td><td><mdl< td=""><td>18</td><td>19</td><td>9.4</td><td><mdl< td=""><td>1.4</td><td><mdl< td=""><td>46</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>9.8</td><td>160</td><td><mdl< td=""><td>18</td><td>19</td><td>9.4</td><td><mdl< td=""><td>1.4</td><td><mdl< td=""><td>46</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>9.8</td><td>160</td><td><mdl< td=""><td>18</td><td>19</td><td>9.4</td><td><mdl< td=""><td>1.4</td><td><mdl< td=""><td>46</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td>9.8</td><td>160</td><td><mdl< td=""><td>18</td><td>19</td><td>9.4</td><td><mdl< td=""><td>1.4</td><td><mdl< td=""><td>46</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	9.8	160	<mdl< td=""><td>18</td><td>19</td><td>9.4</td><td><mdl< td=""><td>1.4</td><td><mdl< td=""><td>46</td></mdl<></td></mdl<></td></mdl<>	18	19	9.4	<mdl< td=""><td>1.4</td><td><mdl< td=""><td>46</td></mdl<></td></mdl<>	1.4	<mdl< td=""><td>46</td></mdl<>	46
MW9	10/9/2012	Not Reported	Not Reported	1.3	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>11</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>11</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>11</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>11</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	11	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th></mdl<></th></mdl<>	<mdl< th=""><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS NS</th></mdl<>	NS NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS NS
MW10	10/9/2012	Not Reported	Not Reported	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>22</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>190</th><th><mdl< th=""><th><mdl< th=""><th>3.2</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>22</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>190</th><th><mdl< th=""><th><mdl< th=""><th>3.2</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>22</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>190</th><th><mdl< th=""><th><mdl< th=""><th>3.2</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>22</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>190</th><th><mdl< th=""><th><mdl< th=""><th>3.2</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>22</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>190</th><th><mdl< th=""><th><mdl< th=""><th>3.2</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	22	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>190</th><th><mdl< th=""><th><mdl< th=""><th>3.2</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>190</th><th><mdl< th=""><th><mdl< th=""><th>3.2</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>190</th><th><mdl< th=""><th><mdl< th=""><th>3.2</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>190</th><th><mdl< th=""><th><mdl< th=""><th>3.2</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>190</th><th><mdl< th=""><th><mdl< th=""><th>3.2</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	190	<mdl< th=""><th><mdl< th=""><th>3.2</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>3.2</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	3.2	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
MW11	10/9/2012	Not Reported	Not Reported	<mdl< th=""><th>2.7</th><th>9.4</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.0</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	2.7	9.4	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.0</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.0</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.0</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.0</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.0</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.0</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.0</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>85</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.0</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	85	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.0</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.0</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.0</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>1.0</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>1.0</th><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	1.0	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
MW12	10/9/2012	Not Reported	Not Reported	<mdl< th=""><th><mdl< th=""><th>94</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>94</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>94</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>94</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>94</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>94</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>94</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>94</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>94</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>94</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>94</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	94	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""></mdl<></th></mdl<>	<mdl< th=""></mdl<>
MW-A	10/9/2012	Not Reported	Not Reported	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2.5</th><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2.5</th><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2.5</th><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>2.5</th><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>2.5</th><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>2.5</th><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<>	2.5	<mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<>	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-D	10/9/2012	Not Reported	Not Reported	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<>	<mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<>	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-E	10/9/2012	Not Reported	Not Reported	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>1.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>4.6</th><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>1.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>4.6</th><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>1.5</th><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>4.6</th><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	1.5	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>4.6</th><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>4.6</th><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>4.6</th><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th>4.6</th><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<>	4.6	<mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<>	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-G	10/9/2012	Not Reported	Not Reported	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<></th></mdl<>	<mdl< th=""><th><mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<></th></mdl<>	<mdl< th=""><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th><th>NS</th></mdl<>	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-H	10/9/2012	Not Reported	Not Reported	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td></mdl<></td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td></mdl<></td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td><mdl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td></mdl<></td></mdl<></td></mdl<>	<mdl< td=""><td><mdl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td></mdl<></td></mdl<>	<mdl< td=""><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td><td>NS</td></mdl<>	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
		Generic G	oundwater Cleanup Crite MDEQ Guidance			al and Non-	-Residentia	l Part 201 0 , Policy an	eneric Clea d Procedur		ia and Scre 09-017, App	ening Leve	els/Part 213				December :	30, 2013					
Residential Drinking Wa	ater (Res DW)			100 {A}	880	5.0 (A)	5.0 {A}	5.0 {A}	5.0 (A)	600 {A}	Various	5,500	Various	10 {A}	2,000 {A}	5.0 (A)	100 {A}	1,000 (E)	4.0 {L}	2.0 {A}	50 (A)	34	2,400
Nonresidential Drinking				100 {A}	2,500	5.0 (A)	5.0 {A}	5.0 {A}	5.0 (A)	600 {A}	Various	16,000	Various	10 (A)	2,000 {A}	5.0 (A)	100 (A)	1,000 {E}	4.0 {L}	2.0 {A}	50 (A)	98	5,000 (E)
Groundwater Surface W	/ater Interface (GSI)			25	740	360 {X}	60 {X}	330 {X}	200 {X}	13	Various	110	Various	10	1,300 {G}	4.6 {G,X}	170 {G}	21 {G}	30 {G,X}	0.0013	5.0	0.2 {M}; 0.06	270 (G)
Residential Groundwate	er Volatilization to Ind	oor Air Inhalation (Re	es GVII) ²	2.10E+05	1.00E+06	9,600	25,000	17,000	2,200	1.6E+5 {S}	Various	NLV	Various	NLV	NLV	NLV	NLV	NLV	NLV	56 (S)	NLV	NLV	NLV
Nonresidential Groundy	residential Groundwater Volatilization to Indoor Air Inhalation (Nonres GVII) ²				2.30E+06	59,000	1.70E+05	1.10E+05	4,900	1.6E+5 {S}	Various	NLV	Various	NLV	NLV	NLV	NLV	NLV	NLV	56 (S)	NLV	NLV	NLV
						,		Scre	ening Leve	ls (µg/L)					10								
Residential Groundwate	ential Groundwater Vapor Intrusion Screening Levels (GW _{VI-res}) ³					41	94	96	9.8	7,600	Various	NL	Various	NL	NL	NL	NL	NL	NL	ID	NL	NL	NL
Nonresidential Groundy	esidential Groundwater Vapor Intrusion Screening Levels (GW _{VI-nr}) ³				18,000	210	460	480	41	32,000	Various	NL	Various	NL	NL	NL	NL	NL	NL	ID	NL	NL	NL
Water Solubility				4.72E+05	5.06E+06	8.52E+06	2.00E+05	4.42E+06	1.10E+06	1.56E+05	Various	1.08E+06	Various	NA	NA	NA	NA	NA	NA	56	NA	NA	NA
Flammability and Explo	sivity Screening Leve	I		1.60E+05	3.80E+05	2.50E+06	ID	NA	ID	NA	Various	ID	Various	ID	ID	ID	ID	ID	ID	ID	ID	ID	ID

Criteria/RBSL Exceeded

BOLD Value Exceeds Applicable Criteria

bgs Below Ground Surface (feet)

ND Not detected at levels above the laboratory Method Detection Limit (MDL) or Minimum Quantitative Level (MQL)

¹ Rule 323.1057 of Part 4 Water Quality Standards

² Tier 1 GVII Criteria based on 3 meter (or greater) groundwater depth

³ (2013 Vapor Intrusion Guidance) Screening Levels based on depth to groundwater less than 1.5 meters and not in contact with building foundation

NA Not Applicable

NL Not Listed

NLL Not Likely to Leach

NLV Not Likely to Volatilize

ID Insufficient Data

{G} Metal GSI Criteria for Surface Water Not Protected for Drinking Water Use based on 269 mg/L CaCO3 Hardness: Station ID 500011, Red Run Drain, near Warren, Ml.

Appendix A

Environmental & Engineering Services Nationwide

ENVIRONMENTAL SERVICES

BUILDING ARCHITECTURE, ENGINEERING & SCIENCE

INDUSTRIAL HYGIENE SERVICES

BROWNFIELDS & ECONOMIC INCENTIVES CONSULTING

PHASE I ENVIRONMENTAL SITE ASSESSMENT UPDATE

1600 West 8 Mile Road | Ferndale, Michigan PM Project Number 01-6124-1-0002

Prepared for:

CG Emerson Real Estate Group 47 Oxford Road Grosse Pointe, Michigan 48236

Prepared by:

PM Environmental, Inc. 4080 West 11 Mile Road Berkley, Michigan 48072

Know Your Risk. Take Control. Work with the Experts.

www.pmenv.com

Detroit 607 Shelby, Suite 650 Detroit, MI 48226 f: 877.884.6775

t: 248.414.1416

Berkley 4080 W. 11 Mile Road Berkley, MI 48072 f: 877.884.6775 t: 248.336.9988 Lansing 3340 Ranger Road Lansing, MI 48906 f: 877.884.6775 t: 517.321.3331 Grand Rapids 560 5th Street NW, Suite 301 Grand Rapids, MI 49504 f: 877.884.6775 t: 616.285.8857

June 16, 2016

Mr. Greg Cooksey Pinecrest Holdings, LLC 47 Oxford Road Grosse Pointe, Michigan 48236

Re: Phase I Environmental Site Assessment Update of the Vacant Industrial Property Located at 1600 West 8 Mile Road, Ferndale, Michigan PM Environmental, Inc. Project No. 01-6124-1-0002

Dear Mr. Cooksey:

PM Environmental, Inc. (PM) has completed the Phase I Environmental Site Assessment (ESA) Update of the above referenced property. This Phase I ESA Update was conducted in general accordance with (1) the United States Environmental Protection Agency (USEPA) Standards and Practices for All Appropriate Inquiries {(AAI), 40 CFR Part 312} and (2) Section 4.6 of the guidelines established by the American Society for Testing and Materials (ASTM) in the Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process / Designation E 1527-13 (ASTM Standard Practice E 1527-13).

The purpose of the Phase I ESA Update was to gather sufficient information to develop an independent professional opinion about the environmental condition of the property.

The Phase I ESA Update for the above referenced property represents the product of PM's professional expertise and judgment in the environmental consulting industry, and it is reasonable for <u>CG EMERSON REAL ESTATE GROUP</u>, <u>EMERSON CONSULTING LLC</u>, <u>PINECREST HOLDINGS LLC</u>, AND <u>CEDAN HOLDINGS VI</u>, <u>LLC</u> to rely on PM's Phase I ESA Update report.

If you have any questions related to this report please do not hesitate to contact our office at (248) 336-9988.

Sincerely,

PM ENVIRONMENTAL, INC.

Indea Magar

Andrea Magar Project Consultant Beth Sexton
National Due Diligence Manager

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1: Limitations, Deviations, and Special Terms and Conditions	1
2.0 SUBJECT PROPERTY OVERVIEW	1
3.0 PREVIOUS SITE INVESTIGATION(S)	2
3.1: Summary of Previous Environmental Reports	
4.0 INTERVIEWS	6
5.0 USER PROVIDED INFORMATION	7
6.0 SUBJECT PROPERTY RECONNAISSANCE	8
6.1: Subject Property Observations	8
6.2: Current Operations	9
6.2.1: Underground Storage Tank(s)	9
6.3: Adjoining Property Observations	
7.0 UPDATE OF RECORDS REVIEW	12
7.1: Local Assessing Department	12
7.2: Local Building Department	12
7.3: Local Fire Department	
7.4: Environmental Liens, Activity and Use Limitations, and Government In	stitutional and
Engineering Controls	
7.5: Regulatory File Review	
7.5.1: Subject Property and Occupant Listings	
7.5.2: Adjoining and Nearby Sites	
8.0 FINDINGS, OPINIONS AND CONCLUSIONS	15
8.1: De Minimis Condition	15
8.1: De Minimis Condition	15 16
8.1: De Minimis Condition 8.2: Significant Data Gaps 8.3: Historical Recognized Environmental Conditions (HRECs)	15 16 16
8.1: De Minimis Condition 8.2: Significant Data Gaps 8.3: Historical Recognized Environmental Conditions (HRECs) 8.4: Controlled Recognized Environmental Conditions (CRECs)	15 16 16 16
8.1: De Minimis Condition 8.2: Significant Data Gaps 8.3: Historical Recognized Environmental Conditions (HRECs) 8.4: Controlled Recognized Environmental Conditions (CRECs) 8.5: Recognized Environmental Conditions (RECs)	15 16 16 16
8.1: De Minimis Condition 8.2: Significant Data Gaps 8.3: Historical Recognized Environmental Conditions (HRECs) 8.4: Controlled Recognized Environmental Conditions (CRECs) 8.5: Recognized Environmental Conditions (RECs) 8.6: Recommendations	15 16 16 16
8.1: De Minimis Condition 8.2: Significant Data Gaps 8.3: Historical Recognized Environmental Conditions (HRECs) 8.4: Controlled Recognized Environmental Conditions (CRECs) 8.5: Recognized Environmental Conditions (RECs) 8.6: Recommendations 9.0 NON-ASTM SCOPE CONSIDERATIONS/BUSINESS ENVIRONMENTAL I	15 16 16 16 18 RISKS18
8.1: De Minimis Condition 8.2: Significant Data Gaps	
8.1: De Minimis Condition 8.2: Significant Data Gaps 8.3: Historical Recognized Environmental Conditions (HRECs) 8.4: Controlled Recognized Environmental Conditions (CRECs) 8.5: Recognized Environmental Conditions (RECs) 8.6: Recommendations 9.0 NON-ASTM SCOPE CONSIDERATIONS/BUSINESS ENVIRONMENTAL I	

FIGURES

- Figure 1: Site Location Map
- Figure 2: Generalized Diagram of the Subject Property and Surrounding Area

APPENDICES

- Appendix A: Property Photographs from Site Reconnaissance Appendix B: Previous Site Investigation(s)
- Appendix C: Correspondence and Supporting Documentation
- Appendix D: Regulatory Database and File Review Correspondence
- Appendix E: Professional Resumes
- Appendix F: Acronyms and Terminology, Scope of Work, ASTM Reference Document,

and User's Continuing Obligations under CERCLA

1.0 INTRODUCTION

PM Environmental, Inc., (PM) was retained to conduct a Phase I Environmental Site Assessment (ESA) Update of the Vacant Industrial Property located at 1600 West 8 Mile Road, Ferndale, Oakland County, Michigan (hereafter referred to as the "subject property"). This Phase I ESA Update was conducted in general accordance with Section 4.6 of the American Society for Testing and Materials (ASTM) Standard Practice for Environmental Site Assessments: Phase I ESA Process (ASTM Designation: E-1527-13).

THIS REPORT WAS PREPARED FOR THE EXCLUSIVE USE OF <u>CG EMERSON REAL ESTATE GROUP</u>, <u>EMERSON CONSULTING LLC</u>, <u>PINECREST HOLDINGS LLC</u>, AND <u>CEDAN HOLDINGS VI, LLC</u>, EACH OF WHOM MAY RELY ON THE REPORT'S CONTENTS.

The purpose of this report is to update the information included in the Phase I ESA report completed by PM in November 2015. The previous report was completed in general accordance with the scope and limitations of the ASTM Standard Practice for Environmental Site Assessments: Phase I ESA Process (Designation: E-1527-13). The information provided in the previous Phase I ESA report sufficiently addressed conditions of the subject property from 2015 to 1937, at which time data failure occurred. In accordance with Section 4.6 of the ASTM Practice E-1527-13, the information provided in the previous report has been adopted for use in this update.

In accordance with Section 4.6 of the ASTM Practice E-1527-13, the minimum requirements for an update of a Phase I ESA include: 1) interviews with owners, operators, and occupants, 2) searches for recorded environmental cleanup liens, 3) review of federal, tribal, state, and local government records, 4) visual inspection of the subject property and of adjoining properties, and 5) the declaration by the environmental professional responsible for the update.

1.1: Limitations, Deviations, and Special Terms and Conditions

There are no deviations from the ASTM Standard. Any physical limitations identified during the completion of this report are referenced in Section 6.0.

Due to changing environmental regulatory conditions and potential on-site or adjacent activities occurring after this assessment, the client may not presume the continuing applicability to the subject property of the conclusions in this assessment for more than 180 days after the report's issuance date, per ASTM Standard Practice E 1527-13.

To the best of PM's knowledge, no special terms or conditions apply to the preparation of this Phase I ESA that would deviate the scope of work from the ASTM Standard Practice E 1527-13.

2.0 SUBJECT PROPERTY OVERVIEW

Subject Property Location/Address	1600 West 8 Mile Road, Ferndale, Oakland County, Michigan
Number of Parcels and Acreage	Two parcels totaling 33.93 acres
Number of Building(s) and Square Footage	No buildings or structures are present, except a 100 square foot guard house located in the southwestern portion of the property (formerly referred to as Building Q)
Current Property Use	Vacant industrial land; no current business operations
Current Zoning	M-1: Limited Industrial

The subject property location is depicted on Figure 1, Site Location Map. A diagram of the subject property and adjoining properties is included as Figure 2, Generalized Diagram of the Subject Property and Surrounding Area. A diagram of the historical layout of the property is included as Figure 3 and Figure 4. Photographs taken during the site reconnaissance are included in Appendix A.

3.0 PREVIOUS SITE INVESTIGATION(S)

PM reviewed the following previous environmental reports for the subject property. Relevant portions of the reports are included in Appendix B.

Name of Report	Date of Report	Company that Prepared Report
Health Department Correspondence (Magnetometer Survey)	1985-1986	Between Ethyl Corporation and Oakland County Health Division
Leaking Underground Storage Tank (LUST) Closure Report	4-3-1997	Swanson Environmental
Phase I ESA	11-27-2012	RJN Environmental
Baseline Environmental Assessment (BEA)	12-2-2012	RJN Environmental
Phase II ESA	12-18-2012	RJN Environmental
Phase II ESA	11-1-2013	RJN Environmental
Phase I ESA	11-3-2015	PM

3.1: Summary of Previous Environmental Reports

Health Department records document that Ethyl Corporation had offered to gift the subject property to Oakland County. The County Health Department performed an initial assessment of the property which included review of available information and a limited environmental study. The areas of concern identified were the former disposal areas and former underground storage tank (UST) basins. A magnetometer survey was completed on a 50 foot grid in portions of the northern, eastern, and central portions where dumping had reportedly occurred. Anomalies consistent with orphan USTs were detected. Limited groundwater samples were collected in the vicinity of former Building AE. Concentrations of toluene, tetrahydrofuran, and chloroform were detected in the groundwater; however, the results provided were estimations based on chromatography. The final results were not provided and additional work was not completed because Oakland County decided not to accept the property.

The subject property is a closed LUST site with one release reported in 1996 and unrestricted Tier I LUST closure granted in 1998. The release was associated with the former 15,000-gallon diesel/gasoline USTs installed in 1988. Approximately 90 cubic yards of soil was removed from the property. Analytical results detected methyl-tert-butyl-ether (MTBE); 1,2,4-trimethylbenzene (TMB); ethylbenzene; and ethylbenzene in soil and/or groundwater samples collected at the subject property above MDEQ Part 213 Drinking Water (DW)/Drinking Water Protection (DWP) and/or Groundwater Surface Water Interface (GSI)/Groundwater Surface Water Interface Protection (GSIP) Risk Based Screening Levels (RBSLs), which would require limited due care obligations. Based on the closed Tier I Unrestricted Residential CLosure and documented site assessment activities which were adequate to assess the former release from these USTs, PM has identified the closed LUST status as a CREC.

A Phase I ESA was performed in 2012. At the time of the Phase I ESA, the property remained occupied by the majority of the former buildings, which were vacant. The Phase I ESA

summarized additional previous site investigations completed at the subject property between 1986 and 1998. According to the 2012 Phase I ESA, test pits were completed in 1986 in the vicinity of the magnetometer survey readings. No buried drums were reportedly encountered; however, fill material consisting of bricks, concrete, and asphalt was observed in these areas. Soil gas samples were also reportedly collected in 1986 in the former UST area; however, results and location of the samples was not provided. The Phase I documents that a release of fuel oil was observed during the removal of the two 10,000-gallon fuel oil USTs. Approximately 240 cubic yards of soil were removed at that time; however, contaminated soil remained in place due to the location of the building and utilities. During subsequent investigations to delineate the fuel oil plume, fuel oil was discovered in one of the monitoring wells. A 1,000-gallon heating oil additive UST was found and removed in 1995, which was located south of the 10,000-gallon fuel oil USTs and was believed to be the source of the fuel oil in the monitoring well. The Phase I ESA documents that the previous site investigations detected volatile organic compounds (VOCs) in the drinking water and soils at the subject property; however, no analytical results were provided. The Phase I ESA identified the following RECs:

- The subject property was historically occupied by Ethyl Corporation. Operations included
 the use of emissions laboratory, engine research, fuel blending, maintenance shops, and
 bulk chemical storage. These operations generally use hazardous substances and/or
 petroleum based products. The detail of the general storage, use and disposal of these
 chemicals is unknown.
- The subject property is listed as a former UST site, a closed LUST site, a former Hazardous Waste Site, a RCRA-Conditionally Exempt Small Quantity Generator (CESQG), a RCRA Corrective Action Site (CORRACTS), and a CERC-No Further Action Planned (NFRAP).
- There are three historical disposal areas identified on the subject property, located near
 the former building AE, north of former Buildings AB and AF, and the northern portion of
 the eastern parking area. The disposal areas were used to dispose of laboratory wastes
 including glassware and residues as well as reactive sodium compounds at various times
 between the 1930s and 1980s.
- Historical groundwater investigations have identified VOCs. The source of this plume has been reported to have been from the historical disposal pit located northwest of the former Building AE.
- Historical reports identified 72 USTs formerly located on the subject property. The bulk of
 the USTs were located in a tank farm located between the former Buildings B and C.
 Additionally, a single heating oil UST was located north of Building D and south of Building
 AE. A review of government records indicates the USTs have been removed. A release
 was reported in 1996 associated with the removal of a former gasoline UST, which was
 granted closure in 1998. The Closure report was not available. Due to lack of confirmation
 sampling data, the USTs have been identified as a REC.
- Former Building H was used for fuel blending and piped to Building C for engine testing.
 There was also a remote fill station west of Building B. The former piping areas is considered a REC.

- Review of historical reports documents releases of fuel oil from a former UST located north
 of Building D. Free product was recovered. Contamination reportedly remains.
- Historical reports document chemical storage in former Buildings I, L, V, and AF. In addition, former Building AN was stated to be utilized for casting aluminum. Additionally, a drum storage pad was located in the central portion of the property.
- A historical record documented a small amount of nuclear source material was located in the soundproofing room of former Building C. The US Nuclear Regulatory Commission terminated the license prior to 1985; however, indicated that there was no clear documentation to terminating the license. No additional information was available.

A Phase II was completed in 2012 to assess the above identified RECs. A total of 30 soil borings were advanced on the subject property and four hand augers were advanced in select areas of former disposal, some UST basins, and some select chemical storage areas. It should be noted that none of the borings were advanced within the footprint of the former buildings. Additionally, eleven existing monitoring wells were sampled. The soil and groundwater samples were analyzed for VOCs, polynuclear aromatic compounds (PNAs), semivolatile organic compound (SVOCs); polychlorinated biphenyls (PCBs), metals, or some combination thereof. During the sampling of a monitoring well located in the vicinity of former fuel oil USTs at Building D, six inches of heating oil was observed in the monitoring well. Analytical results indicated that various PNAs, VOCs, and metals were detected in soils above Part 213 GSIP and DWP RBSLs. Additionally, arsenic exceeded the Part 213 Direct Contact (DC) RBSLs and phenanthrene exceeded the Infinite Source Volatile Soil Inhalation Criteria (VSIC) and Finite VSIC RBSLs. No PCBs were detected. Analytical results for groundwater indicated that various VOCs and lead exceeded the Part 213 DW RBSLs. Based on these results, a BEA was completed.

A subsequent Phase II ESA was reportedly performed in which 15 soil borings and four hand augers were advanced and five of the monitoring wells were sampled; however, the information provided was from the previously discussed 2012 sampling event. The report recommends excavation of impacted soils within the known disposal areas.

PM completed a Phase I ESA completed for the subject property in November 2015. At the time of the Phase I ESA, the subject property consisted of vacant industrial land with a layout similar to the current layout. Standard and other historical sources reviewed during the Phase I ESA were able to document that the subject property was developed as a research and development facility for chemical additives for gasoline in 1937, with several buildings constructed at various times between the 1930s and 1980s. All of the buildings were demolished, except the current guard house (formerly Building Q), with the majority of the buildings being demolished between 2012 and 2013. Historical operations included the research and development facility from the 1930s until the 1980s, followed by manufacturing operations from the 1980s until 2012, and the property has been vacant since 2013. The following on-site RECs were identified, which have not been assessed and remain RECs:

• The subject property was occupied by a research and development facility for chemical additives for gasoline from the 1930s until the 1980s, followed by manufacturing operations from the 1980s until vacated in 2012. Based upon review of the previous subsurface investigations, soil and groundwater contamination is present which exceeds the current Part 201 Residential and Nonresidential Generic Cleanup Criteria. Based on

these analytical results, the subject property would be classified as a "facility," as defined by Part 201 of P.A. 451 of the Michigan NREPA, as amended.

- Review of available information documents that laboratory wastes, residues, glassware, foundry sands, and containers were buried in the northern, central, and eastern portions of the subject property. The previous site investigations were not adequate to assess these former disposal areas. Review of Health Department records documents that 11 disposal pits were located in the vicinity of former Building AE, the majority of which were located east of the building: unmapped disposal areas were also reported to be present north of former Building AI and in the vicinity of the eastern parking lot from the 1930s through the 1980s. Additionally, review of aerial photographs document ground disturbance throughout the northern and/or central portion of the subject property during the 1930s through the 1970s. The previous site investigations were limited to two small areas north and northeast of former Building AE and in the vicinity of the eastern parking area. Contamination has been identified above MDEQ Part 201 Generic Cleanup Criteria (GCC) in the assessed portions of the disposal areas. Additionally, based on the operations of the site and the information provided, the potential exists for drums or potential explosive or reactive materials to have been buried. Based on this information, the potential exists for additional contamination and/or potentially hazardous materials may be present below the subsurface.
- The subject property formerly contained at least 78 USTs. The majority of the USTs were located within three UST farms, located west of former Building R, west of former Building B, and north of former Building H (in between former Buildings B and C). Additional USTs were located north of former Building D, south of former Building AE, and in the vicinity of former Buildings O, M, E, and F. The previous site investigations were not adequate to assess the USTs, with the exception of the two former 15,000-gallon gasoline/diesel USTs which were located west of former Building C and the 1,000-gallon fuel oil UST located south of former Building AE. Free product was found in a monitoring well located in the vicinity of the former 10,000-gallon heating oil USTs located in the vicinity of former One soil sample was collected west of former Building B to assess eight former USTs and gasoline dispensing operations; no soil and/or groundwater samples were collected to assess the USTs which were located in the central portion of the property including the UST farm formerly located west of former Building R; 54 USTs were located north of former Building H; however, only a few soil and groundwater samples were collected in this area. Based on the long time period of operations and the number of USTs identified, the potential exists for additional USTs to be present. Records reviewed document that heating oil USTs were not registered and/or thoroughly documented. Additionally, USTs outside of the three main UST farms were not well documented as to the location. The previous site investigations did not include GPR survey. Based on this information, the potential exists for additional contamination and/or for orphan USTs to be present.
- Historical operations included blending of fuels, foundry operations, service operations, maintenance operations, chemical storage, incinerator, and laboratory testing from the 1930s until the 1980s followed by manufacturing operations. The previous site investigations were not adequate to assess the historical operations. No soil and/or groundwater sampling was conducted within the building footprints, former chemical storage areas, oil sumps, foundry operations, machine shop operations, fuel blending

operations, service garage, and maintenance operations were also not adequately assessed. Therefore, the potential exists for additional contamination to be present.

RECs were also identified associated with historical ground disturbance at the north adjoining property and the former long term printing operations and known contamination at the west adjoining property, which have not been assessed and remain RECs. Refer to Sections 6.3 and 7.5.2 for additional information.

4.0 INTERVIEWS

Section 4.6 of the ASTM Practice E-1527-13 requires new interviews be completed with the owner, operators, and occupants of the subject property. The objective of completing interviews with knowledgeable site contacts is to obtain information about the uses and physical characteristics of the property.

Represents	Interviewed	Name and Title	Length of Time Associated with Subject Property	Comments
Current Property Owner	No	Mr. Greg Cooksey, the current owner	Since November 2015	Ms. Cooksey purchased the property in May 2015 and has no knowledge of the property except for the environmental reports provided.
Former Property Owner	Yes	Mr. Robert Jacobs, Attorney for the former owner	Unknown	PM previously interviewed Mr. Jacobs during the completion of the 2015 Phase I ESA. Mr. Jacobs stated the former property owner, Mr. Norbert Wiersziewski, passed away in 2014 but would have had no knowledge of the property except for the environmental reports provided.
Key Site Manager	No	Not applicable	Not applicable	The property is currently vacant; therefore, there is no key site manager.
Current Occupant(s)	No	Not applicable	Not applicable	The property is currently vacant; therefore, there is no current occupant.
Former Occupant(s)	No Not applicable		Not applicable	Contact information for the former occupants was not reasonably ascertainable or provided by the User
Other(s)	No	Not applicable	Not applicable	No other relevant interviews were conducted as part of this Phase I ESA.

5.0 USER PROVIDED INFORMATION

The ASTM Standard defines a User as "the party seeking to use Practice E 1527 to complete an environmental site assessment. A User may include, without limitation, a potential purchaser of property, a potential tenant of property, an owner of property, a lender, or a property manager." The User has specific obligations for completing a successful application of this practice as outlined in Section 6 of the ASTM Standard Practice E 1527-13.

In order to qualify for one of the Landowner Liability Protections (LLPs) offered by the Small Business Liability Relief and Brownfield's Revitalization Act of 2001 (the "Brownfield's Amendments") (if desired), the User must provide certain information (if available) identified in the User Questionnaire to the environmental professional. Failure to provide this information could result in a determination that "all appropriate inquiry" is not complete.

The following responses were provided by the User.

Question	Response
Name of Preparer and User Entity	CG Emerson Real Estate Group; Pinecrest Holdings, LLC
Are you aware of any environmental cleanup liens against the property that are filed or recorded under federal, tribal, state or local law?	No
Are you aware of any Activity and Use Limitations, such as engineering controls, land use restrictions or institutional controls that are in place at the site and/or have been filed or recorded in a registry under federal, tribal, state or local law?	No
As the user of this ESA do you have any specialized knowledge or experience related to the property or nearby properties? For example, are you involved in the same line of business as the current or former occupants of the property or an adjoining property so that you would have specialized knowledge of the chemicals and processes used by this type of business?	No
Does the purchase price being paid for this property reasonably reflect the fair market value of the property?	Yes
If you conclude that there is a difference, have you considered whether the lower purchase price is because contamination is known or believed to be present at the property?	Not applicable
Are you aware of commonly known or reasonably ascertainable infended help the environmental professional to identify conditions indicative For example, as user:	
Do you know the past uses of the property?	No
Do you know of specific chemicals that are present or once were present at the property?	No
Do you know of spills or other chemical releases that have taken place at the property?	No
Do you know of any environmental cleanups that have taken place at the property?	No

Question	Response
As the user of this ESA, based on your knowledge and experience related to the property are there any obvious indicators that point to the presence or likely presence of contamination at the property?	No

6.0 SUBJECT PROPERTY RECONNAISSANCE

Reconnaissance Information			
PM Field Personnel: Ms. Andrea Magar and Ms. Kristen King			
Site Reconnaissance Date:	June 7, 2016		
Escort:	PM was not escorted during the site reconnaissance		
Observations limited by dense vegetation in the northern portion of			
Limitations: the property. Based on historical sources, PM has not identified t			
limitation as a significant data gap.			

6.1: Subject Property Observations

The subject property contains an approximately 100 square feet guard house and a mobile trailer which are located in the southwestern portion of the property. The guard house is partially finished with a plywood floor, cinderblock walls, and a drywall ceiling. The guard house is on a poured concrete foundation. The mobile trailer is finished with 12 inch by 12 inch vinyl floor tiles, wood panel walls, and drywall ceilings.

An asphalt parking lot is present in the southeastern portion of the property and piles of concrete and asphalt are present in the southern portion. The remainder of the property contains bare soil, overgrown vegetation, forested areas, and parking areas.

The following table summarizes the site observations. Affirmative responses are discussed in more detail following the table.

Category	Feature	Observed
	Elevators	No
	Air Compressors	No
	Incinerators	No
	Waste Treatment Systems	No
Interior Equipment	Presses/Stamping Equipment	No
Interior Equipment	Press Pits	No
	Hydraulic Lifts or In-ground hoists	No
	Paint Booth	No
	Plating Tanks	No
	Lathes, Screw Machines, etc.	No
Above ground Chemical or	Aboveground Storage Tanks (ASTs)	No
Aboveground Chemical or Other Waste Storage or	Drums, Barrels and/or Containers > 5 gallons	Yes
Waste Streams	Chip Hoppers	No
Waste Streams	Hazardous or Petroleum Waste Streams	No
Underground Chemical or	Underground Storage Tanks	No
Underground Chemical or Waste Storage, Drainage or	Fuel Dispensers	No
Collection Systems	Sumps or Cisterns	No
Collection Systems	Dry Wells	No

Category	Feature	Observed
	Oil/Water Separators	No
	Floor Drains, Trench Drains, etc.	No
	Pipeline Markers	No
	Stressed Vegetation	No
	Stained Soil or Pavement	No
	Monitoring Wells	Yes
	Pad or Pole Mounted Transformers and/or Capacitors	No
	Soil Piles of Unknown Origin	No
	Exterior Dumpsters with Staining	No
Exterior Observations	Leachate or Other Waste Seeps	No
Exterior Observations	Trash, Debris, and/or Other Waste Materials	No
	Uncontrolled Dumping or Disposal Areas	No
	Surface Water Discoloration, Sheen or Free Product	No
	Strong, Pungent or Noxious Odors	No
	Storm water retention or detention ponds	No
	Pits, Ponds, Lagoons	No
	Oil and Gas Wells	No

Drums, Barrels, and/or Containers > 5-gallons: PM observed one 55-gallon drums and totes located in the western portion of the property that were not in secondary containment. Although some of the containers appeared to be empty, others appeared to contain unknown materials. The drums were stored on pavement or soil and appeared to be in good condition. An area of discoloration was observed on a portion of the pavement; however, the discoloration appeared to be due to organic materials and not petroleum based. Based on these observations, PM has not identified the containers as a REC. However, PM recommends the containers be properly disposed of in accordance with State and Federal regulations.

Monitoring Wells: PM observed monitoring wells located in the central portion of the property. Some of the wells were damaged and unusable. The monitoring wells were installed to monitor groundwater contamination on the property, as discussed in Section 3.0.

6.2: Current Operations

The subject property is currently unoccupied and therefore there are no current business operations.

6.2.1: Underground Storage Tank(s)

The subject property contained at least 77 former USTs. The following table indicates the size of the UST, contents, location (if known), the dates of installation and removal, and the source of the information.

Historical UST Information

Number of USTs	Size	Contents	Location	Date Installed	Date Removed	Source
7	10,000-gallon	Unknown	West of former Building R	1956	1985	Fire Dept., Building Dept., & PSI*

Number of USTs	Size	Contents	Location	Date Installed	Date Removed	Source
1	1,000-gallon	Unknown	South of former Building R	1956	1985	Fire Dept., Building Dept., & PSI*
8	2,000-gallon	Gasoline and/or Diesel	West of former Building B	Unknown	1985	Fire Dept., Building Dept., & PSI*
15	500-gallon	Unknown	North of former Building H	1942	1985	Fire Dept., Building Dept., & PSI*
11	1,000-gallon	Unknown	North of former Building H	1942	1985	Fire Dept., Building Dept., & PSI*
4	5,000-gallon	Unknown	North of former Building H	1942	1985	Fire Dept., Building Dept., & PSI*
4	10,000-gallon	Unknown	North of former Building H	1942	1985	Fire Dept., Building Dept., & PSI*
14	1,000-gallon	Unknown	North of former Building H	1948	1985	Fire Dept., Building Dept., & PSI*
4	10,000-gallon	Unknown	North of former Building H	1948	1985	Fire Dept., Building Dept., & PSI*
3	1,000-gallon	Unknown	Likely in the vicinity of Buildings O, M, J, E, and/or L	Unknown	1985	Fire Dept., Building Dept., & PSI*
1	500-gallon	Unknown	Unknown	Unknown	1985	Fire Dept., Building Dept., & PSI*
2	10,000-gallon	Fuel oil	North of the boiler room of former Building D	Unknown	1992	Fire Dept., Building Dept., & PSI*
1	1,000-gallon	Fuel oil	South of former Building AE	Unknown	Unknown	Fire Dept., Building Dept., & PSI*
2	15,000-gallon	Diesel and/or gasoline	West of former Building C	1988	2008	Fire Dept., MDEQ, & PSI
1	1,000-gallon	Fuel oil additive	North of the boiler room of former Building D	Unknown	1995	PSI

^{*}PSI-previous site investigations

Fire Department records were inconsistent regarding whether 72 or 73 USTs that were to be removed in 1985; however, a total of 72 USTs appear to have been removed at that time. Refer to Section 3.0 for information pertaining to the previous site investigations.

6.3: Adjoining Property Observations

PM also completed a visual inspection of the adjoining properties from the subject property and public thoroughfares during the June 7, 2016 site reconnaissance. The following paragraphs provide information about the adjoining properties obtained during the site reconnaissance and through review of reasonably ascertainable information.

North Adjoining Property

The north adjoining property, identified as 881 Pinecrest Drive, is occupied by Ferndale High School. Review of historical records documents that the property was formerly vacant land from the 1930s until the current high school was built during the late 1950s. Ground disturbance was observed on the property during the 1940s and 1950s, which may have been part of the subject property disposal practices. Contamination has been identified with the disposal operations that occurred on the subject property during this time period. Therefore, the potential exists for contamination to be present and to be migrating onto the subject property, which represents a REC.

East Adjoining Properties, across Pinecrest Drive

The east adjoining property, identified as 140 Pinecrest Drive, is occupied by a gasoline dispensing station. Review of historical records documents that the property was vacant land until a gasoline service station was constructed during the 1940s. That gasoline service station was demolished and the current building was constructed during the 1970s. This site is identified in the regulatory database. Refer to Section 7.5.2 for additional information.

The remainder of the east adjoining properties are currently and have historically been residential.

South Adjoining Property

The south adjoining property is currently Eight Mile Road (an eight lane road) and associated medians, followed by various commercial properties. Review of historical information documents that Eight Mile Road was constructed prior to 1937. The properties south of Eight Mile Road were generally residential until the 1950s. Commercial operations have consisted of gasoline dispensing stations, dry cleaners, and automotive repair; however, based on the distance from the subject property (at least 200 feet) and the regional groundwater flow direction towards the east to southeast, PM has not identified the historical operations across Eight Mile Road a REC.

West Adjoining Properties

The west adjoining property, identified as 2000 West Eight Mile Road, is occupied by Axle of Dearborn. Review of historical records documents that the property was vacant land until the original portion of the subject building was constructed during the late 1940s with additions constructed between the 1950s and 1980s. Historical operations have consisted of printing operations from at least 1950 until at least 2012 and Axle of Dearborn since at least 2013. This tenant space is identified in the regulatory database. Refer to Section 7.5.2 for additional information.

The remainder of the west adjoining properties are currently and have historically been residential.

7.0 UPDATE OF RECORDS REVIEW

PM reviewed the following records to fill in data gaps and confirm no significant changes have been made on the subject property since the previous Phase I ESA was completed.

7.1: Local Assessing Department

Reasonably ascertainable assessment information provided by the Oakland County Assessing Department was obtained and reviewed. Assessing records document that the subject property consists of two parcels containing 33.93 acres. Assessing records document the former buildings present on the property were demolished between 2012 and 2013. Copies of available assessment records for the subject property and the current legal description are included in Appendix C.

7.2: Local Building Department

Reasonably ascertainable assessment information provided by the City of Ferndale Building Department was previously obtained and reviewed. Building Department records document that the property formerly contained over 40 former buildings which were demolished between 2012 and 2014. Building Department records documented several basement walls remained in place as of 2014 to contain contaminated soil which would be excavated in 2015. Records also indicated a fueling station was previously located on the subject property in the loading dock area of Building B. Building Department records provided by CMI-Tech Center Inc., who occupied the building following Ethyl Corporation, provided information about the historical operations in some of the former buildings, which is summarized in the table below. PM attempted to obtain additional records available since the completion of the previous Phase I ESA in November 2015 but was informed that no additional records are available.

Building	Historical Usage	Heat	
А	Offices, cafeteria, library, and machine shop operations	Unspecified	
В	Office, machine shop, and maintenance of company vehicles	Steam heat with fans	
BA	Machine shop	Unspecified	
С	Offices, dynamometer testing, fuel testing, and other control testing	Central steam system	
D	Office and chemical laboratories	Central steam system	
DAN	Chemical laboratory and offices	Boiler system (also services DA)	
DA	Offices	Boiler system (also services DAN)	
DAS	Auditorium and offices	Unspecified	
Н	Fuel storage and blending and general storage	Central steam system	
E	Offices and large engine dynamometer testing	Unspecified	
F	Maintenance, pipe shop, carpenter shop, glass blower shop, and manufacturing	Unspecified	
G	Analytical chemistry, testing engine lab, and offices	Unspecified	
М	Chemical laboratory with heavy equipment and manufacturing	Steam heat	
AN	Dynamometer testing area, dipping operations, and manufacturing	Steam heat	
0	Storage	Unheated	

U	Chemical experiment operations, pilot programs, and offices	Central steam system
UA	Chemical experiment operations, pilot programs, and offices	Central steam system
R	Fuel blending (indicates former USTs were located in this area but have been removed)	Unspecified
AE	High pressure lab and storage	Unspecified

7.3: Local Fire Department

No recent inspections or violations were available from the City of Ferndale Fire Department.

7.4: Environmental Liens, Activity and Use Limitations, and Government Institutional and Engineering Controls

PM has not identified any record of environmental liens, activity and use limitations, or institutional controls or engineering controls associated with the subject property through review of reasonable ascertainable records.

7.5: Regulatory File Review

PM retained EDR to provide current regulatory database information compiled by a variety of federal and state regulatory agencies. A copy of the complete database is included in Appendix D. The following information was obtained.

Туре	Regulatory Agency Database	Approximate Minimum Search Distance (AMSD)	Number of Sites within AMSD
Federal	National Priority List (NPL) Sites	1 mile	0
Federal	Delisted National Priority List (DNPL) Sites	½ mile	0
Federal	Comprehensive Environmental Response, Compensation, and Liability Information System (CERCLIS) Sites	½ mile	1
Federal	CERCLIS No Further Remediation Action Planned (NFRAP) Sites	subject property and adjoining properties	1
Federal	Resource Conservation and Recovery Act (RCRA) Corrective Action Report (CORRACTS) Sites	1 mile	1
Federal	RCRA non-CORRACTS Treatment, Storage or Disposal (TSD) Sites	½ mile	0
Federal	RCRA Large Quantity Generators (LQG) Sites	subject property and adjoining properties	0
Federal	RCRA Small Quantity Generators (SQG) Sites	subject property and adjoining properties	0
Federal	RCRA Conditionally Exempt Small Quantity Generators (CESQG) Sites	subject property and adjoining properties	2
Federal	RCRA Non-Generators (NON-GEN) Sites	subject property and adjoining properties	1
Federal	US Brownfield Sites	½ mile	0
Federal	Institutional Control / Engineering Control Registries	subject property	0
Federal	Environmental Response and Notification System (ERNS)	subject property	0

Туре	Regulatory Agency Database	Approximate Minimum Search Distance (AMSD)	Number of Sites within AMSD
State & Tribal	Hazardous Waste Sites (HWS) (equivalents to NPL and CERCLIS)	1 mile	0
State & Tribal	Delisted Hazardous Waste Sites (HWS)	1 mile	0
State & Tribal	Solid Waste Facilities/Landfill Sites (SWLF)	½ mile	0
State & Tribal	Historical Landfill Sites (HIST LF)	½ mile	0
State & Tribal	Leaking Underground Storage Tank (LUST) Sites	½ mile	11
State & Tribal	Registered Underground Storage Tank (UST) Sites	subject property and adjoining properties	2
State & Tribal	Institutional Control / Engineering Control Registries	subject property	0
State & Tribal	Brownfield Sites	½ mile	0
State	Baseline Environmental Assessment (BEA) Sites	½ mile	11
Either	Unmappable Database Listings (a.k.a. Orphan Sites)	database-dependent	1

7.5.1: Subject Property and Occupant Listings

The regulatory database report identified the following listings for the subject property or its known occupants on the referenced databases:

Corp – The subject property is identified as a closed LUST site with one release reported in 1996 and granted Tier I Unrestricted Residential Closure in 1998, a BEA site, a CERC-NFRAP site (aka SEMS-Archive (Superfund Enterprise Management System Archive), a CORRACTS site, a RCRA-CESQG site with violations reported in 1995 and 2001 with no correction date provided, and a former UST site. Additionally, the subject property is listed in the Facility Index System (FINDS) and the Waste Data System (WDS) databases which is likely associated with the RCRA generator status. Refer to Section 3.0 for a summary of the LUST and BEA site investigation activities and Section 6.2.1 for a summary of the former UST systems. The historical operations were not adequately assessed during the previous site investigations; therefore, have been identified as a REC.

7.5.2: Adjoining and Nearby Sites

PM's review of the referenced databases also considered the potential or likelihood of contamination from adjoining and nearby sites. To evaluate which of the adjoining and nearby sites identified in the regulatory database report present an environmental risk to the subject property, PM considered the following criteria:

- The type of database on which the site is identified.
- The topographic position of the identified site relative to the subject property.
- The direction and distance of the identified site from the subject property.
- Local soil conditions in the subject property area.

- The known or inferred groundwater flow direction in the subject property area.
- The status of the respective regulatory agency-required investigation(s) of the identified site, if any.
- Surface and subsurface obstructions and diversions (e.g., buildings, roads, sewer systems, utility service lines, rivers, lakes, and ditches) located between the identified site and the subject property.

Only those sites that are judged to present a potential environmental risk to the subject property and/or warrant additional clarification are further evaluated. Using the referenced criteria, and based upon a review of readily available information contained within the regulatory database report, PM did not identify adjoining (i.e., bordering) or nearby sites (e.g., properties within a ¼-mile radius) listed in the regulatory database report that were judged to present a potential environmental risk to the subject property, with the exception of the following:

Albadyah Inc and Knight Enterprises Inc. – This site is identified as 140 Pinecrest Drive and is the east adjoining property. Review of the regulatory database indicates this site is identified as an active UST site and a RCRA-NonGen with no violations reported. The property currently contains seven USTs ranging from 4,000 gallons to 8,000 gallons that contain gasoline, diesel, or kerosene and were installed in 1976. Additionally, one 550-gallon used oil UST and one 1,000-gallon fuel oil UST were removed from the property in 1993. No releases were reported during the removal of the USTs. Based on the distance from the subject property (across Pinecrest; over 100 feet), and the groundwater flow direction towards the east to southeast (away from the subject property), PM has not identified this site as a REC.

Axle of Dearborn and AT&T Wireless – This site is identified as 2000 West Eight Mile Road is the west adjoining property. Review of the regulatory database indicates that the site is a RCRACESQG with no violations reported and a BEA site. Review of available MDEQ records documents that the property was historically occupied by printing operations from the 1950s until the 2000s, and one soil boring was advanced on the property in the northeastern parking area to evaluate a small portion of the property which was going to be leased by AT&T. Low levels of PNAs were detected in the soil. Printing operations generally consist of the use of hazardous substances and/or petroleum based products. Based on the relative close proximity (within 50 feet) and the groundwater flow direction towards the property, the potential exists for a release to have occurred on this property and to have migrated onto the subject property, which represents a REC.

Additional LUST sites and BEA sites were identified within one-eighth of a mile; however, based on several factors including the distance of the sites from the property, the low mobility of the contaminants present at the sites, the removal of the sources(s) of the contamination, the groundwater flow direction in relation to the subject property, and/or the delineation of the contamination towards of the subject property, PM has not identified these sites as RECs.

8.0 FINDINGS, OPINIONS AND CONCLUSIONS

8.1: De Minimis Condition

A de minimis condition, as defined in the ASTM Standard, is a condition that generally does not present a threat to human health or the environment and generally would not be the subject of an enforcement action if brought to the attention of appropriate governmental agencies. Conditions

determined to be de minimis are not RECs or CRECs. No de minimis conditions were identified during this assessment.

8.2: Significant Data Gaps

A data gap, as defined in the ASTM Standard, is a lack of or inability to obtain information required by the ASTM Standard despite good faith efforts by the environmental professional to gather such information. The environmental professional must then determine whether these gaps are significant. PM did not identify or encounter any instances of significant data gaps during the course of this ESA.

8.3: Historical Recognized Environmental Conditions (HRECs)

An HREC, as defined in the ASTM Standard, is a past release of hazardous substances or petroleum products that has occurred in connection with the subject property and has been addressed to the satisfaction of the applicable regulatory authority or meeting unrestricted residential use criteria established by a regulatory authority, without subjecting the subject property to any required controls. PM has not identified any HRECs in association with the subject property.

8.4: Controlled Recognized Environmental Conditions (CRECs)

A CREC, as defined in the ASTM Standard, is a recognized environmental condition (REC) resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls. The following CREC was identified:

• The subject property is a closed Leaking Underground Storage Tank (LUST) site with one release reported in 1995 and granted a Tier 1 Unrestricted Residential LUST Closure in 1998. Review of previous site assessment activities documents that the release was associated with the former 15,000-gallon gasoline and/or diesel USTs installed in 1988. Soil contamination remains on-site above the current Part 213 Tier 1 Drinking Water Protection (DWP) and Groundwater Surface Water Interface Protection (GSIP) Risk Based Screening Levels (RBSLs). Based on the required due care obligations and documented site assessment activities which were adequate to assess the former release from these USTs, PM has identified the closed LUST status as a CREC.

As per the ASTM Standard, CRECs are also identified as RECs. Refer to the REC bullet below for additional information.

8.5: Recognized Environmental Conditions (RECs)

We have performed a Phase I Environmental Site Assessment Update in conformance with the scope and limitations of ASTM Practice E 1527-13 of the Vacant Industrial Property located at 1600 West 8 Mile Road, Ferndale, Oakland County, Michigan, the property. Any exceptions to, or deletions from, this practice are described in Section 1.1 of this report. This assessment has revealed no evidence of recognized environmental conditions connected with the property except the following:

- The subject property was occupied by a research and development facility for chemical additives for gasoline from the 1930s until the 1980s, followed by manufacturing operations from the 1980s until vacated in 2012. Based upon review of the previous subsurface investigations, soil and groundwater contamination is present which exceeds the current Part 201 Residential and Nonresidential Generic Cleanup Criteria. Based on these analytical results, the subject property would be classified as a "facility," as defined by Part 201 of P.A. 451 of the Michigan NREPA, as amended.
- Review of available information documents that laboratory wastes, residues, glassware, foundry sands, and containers were buried in the northern, central, and eastern portions of the subject property. The previous site investigations were not adequate to assess these former disposal areas. Review of Health Department records documents that 11 disposal pits were located in the vicinity of former Building AE, the majority of which were located east of the building; unmapped disposal areas were also reported to be present north of former Building AI and in the vicinity of the eastern parking lot from the 1930s through the 1980s. Additionally, review of aerial photographs document ground disturbance throughout the northern and/or central portion of the subject property during the 1930s through the 1970s. The previous site investigations were limited to two small areas north and northeast of former Building AE and in the vicinity of the eastern parking area. Contamination has been identified above MDEQ Part 201 Generic Cleanup Criteria (GCC) in the assessed portions of the disposal areas. Additionally, based on the operations of the site and the information provided, the potential exists for drums or potential explosive or reactive materials to have been buried. Based on this information, the potential exists for additional contamination and/or potentially hazardous materials may be present below the subsurface.
- The subject property formerly contained at least 78 USTs. The majority of the USTs were located within three UST farms, located west of former Building R, west of former Building B, and north of former Building H (in between former Buildings B and C). Additional USTs were located north of former Building D, south of former Building AE, and in the vicinity of former Buildings O, M, E, and F. The previous site investigations were not adequate to assess the USTs, with the exception of the two former 15,000-gallon gasoline/diesel USTs which were located west of former Building C and the 1,000-gallon fuel oil UST located south of former Building AE. Free product was found in a monitoring well located in the vicinity of the former 10,000-gallon heating oil USTs located in the vicinity of former Building D. One soil sample was collected west of former Building B to assess eight former USTs and gasoline dispensing operations; no soil and/or groundwater samples were collected to assess the USTs which were located in the central portion of the property including the UST farm formerly located west of former Building R; 54 USTs were located north of former Building H; however, only a few soil and groundwater samples were collected in this area. Based on the long time period of operations and the number of USTs identified, the potential exists for additional USTs to be present. Records reviewed document that heating oil USTs were not registered and/or thoroughly documented. Additionally, USTs outside of the three main UST farms were not well documented as to the location. The previous site investigations did not include GPR survey. Based on this information, the potential exists for additional contamination and/or for orphan USTs to be present.

Historical operations included blending of fuels, foundry operations, service operations, maintenance operations, chemical storage, incinerator, and laboratory testing from the 1930s until the 1980s followed by manufacturing operations. The previous site investigations were not adequate to assess the historical operations. No soil and/or groundwater sampling was conducted within the building footprints, former chemical storage areas, oil sumps, foundry operations, machine shop operations, fuel blending operations, service garage, and maintenance operations were also not adequately assessed. Therefore, the potential exists for additional contamination to be present.

The following adjoining and/or nearby RECs have been identified:

- Ground disturbance was observed on the north adjoining property, identified as 881
 Pinecrest Drive, during the 1940s and 1950s, which may have been part of the subject
 property disposal practices. Contamination has been identified with the disposal
 operations that occurred on the subject property during this time period. Therefore, the
 potential exists for contamination to be present and to be migrating onto the subject
 property.
- The west adjoining property, identified as 2000 West Eight Mile Road, is a BEA site. Review of available MDEQ records documents that one soil boring was advanced on the property in the northeastern parking area. Low levels of PNAs were detected in the soil. The property was historically occupied by printing operations from the 1950s until the 2000s. Printing operations generally consist of the use of hazardous substances and/or petroleum based products. Based on the relative close proximity (within 50 feet) and the groundwater flow direction towards the property, the potential exists for a release to have occurred on this property and to have migrated onto the subject property.

8.6: Recommendations

We have performed a Phase I Environmental Site Assessment Update in conformance with the scope and limitations of ASTM Practice E 1527-13 of the Vacant Industrial Property located at 1600 West 8 Mile Road, Ferndale, Oakland County, Michigan, the property. Any exceptions to, or deletions from, this practice are described in Section 1.1 of this report. This assessment has revealed no evidence of recognized environmental conditions connected with the property except as listed in Section 8.5 of this report.

Parts 201 and 213 of the 1994 Michigan Natural Resources Environmental Protection Act (NREPA) provide liability protection for off-site migration of contamination to the subject property. Legal counsel should be consulted regarding issues related to potential off-site migration of contaminants.

Verification of the presence or absence of contaminants potentially associated with these RECs may be determined through a Phase II investigation at the request of the client. Cost/risk analysis decisions associated with further investigation of these conditions are the decision of the client.

9.0 NON-ASTM SCOPE CONSIDERATIONS/BUSINESS ENVIRONMENTAL RISKS

PM has included a discussion of Non-ASTM Scope Considerations based upon industry standards and lender requirements. A Business Environmental Risk is defined as a risk which can have a material environmental or environmentally-driven impact on the business associated

with the current or planned use of a parcel of commercial real estate, not necessarily limited to those environmental issues required to be investigated in this practice.

Non-ASTM Item	Observations or Information
Potential Asbestos Containing Building Materials (ACBM)	Based upon PM's limited visual observations during the site reconnaissance, suspect ACBMs identified included 12 inch by 12 inch vinyl floor tiles, wood panel walls, and drywall walls and ceilings. The materials appeared to be in good condition. The materials in the guard house should be sampled if renovation or demolition activities are planned, and if found to be asbestos containing, should be repaired or removed by a licensed asbestos contractor in accordance with all applicable federal, state, and local regulations. Repair or removal operations should be supervised by an independent, third party industrial hygiene firm. Any remaining asbestos-containing materials can be maintained with a properly developed Asbestos Operations and Maintenance (O&M) Program. PM can provide a proposal to perform this work at the request of the client.
Lead Based Paint	Because the guard house was constructed by 1937, there is a potential that the paint in the guard house is lead-based. However, the painted surfaces were observed to be in generally good condition, the subject property is not a residential use, and there is no regulatory requirement to sample suspected lead-based painted surfaces at this time. Therefore, no samples were collected and no further action or investigation is recommended regarding suspected LBP at the subject property. The potential for lead based paint to be present in the mobile trailer is unlikely.
Visual Mold or Significant Moisture Damage	PM performed a limited visual assessment for the presence of mold, conditions conducive to mold, and evidence of moisture in readily accessible interior areas of the subject property. PM did not note obvious visual indications of the presence of mold, conditions conducive to mold, or evidence of moisture in readily accessible interior areas of the subject property.

10.0 SIGNATURE(S) OF ENVIRONMENTAL PROFESSIONAL(S)

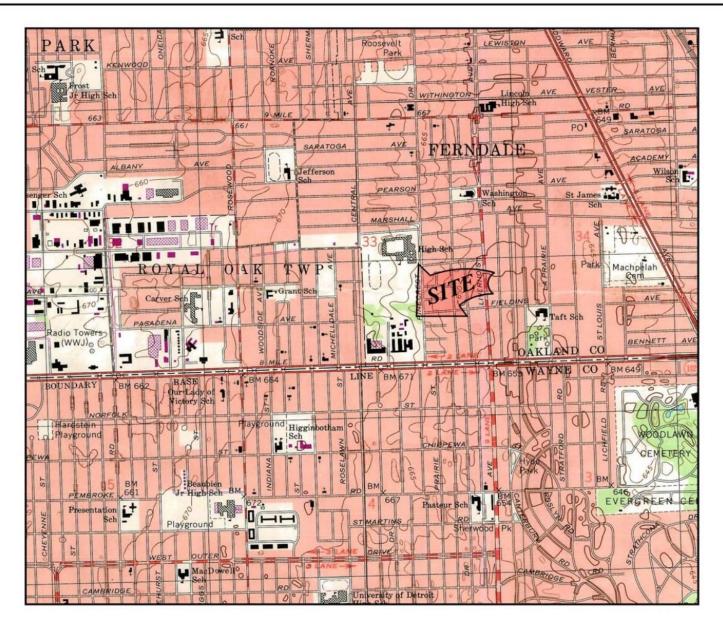
I declare that, to the best of my professional knowledge and belief, I meet the definition of *Environmental professional* as defined in §312.10 of 40 CFR 312 and I have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the subject property. I have developed and performed the all appropriate inquires in conformance with the standards and practices set forth in 40 CFR Part 312.

Beth Sexton

National Due Diligence Manager

11.0 REFERENCES

The following published sources were utilized during completion of this Phase I ESA:

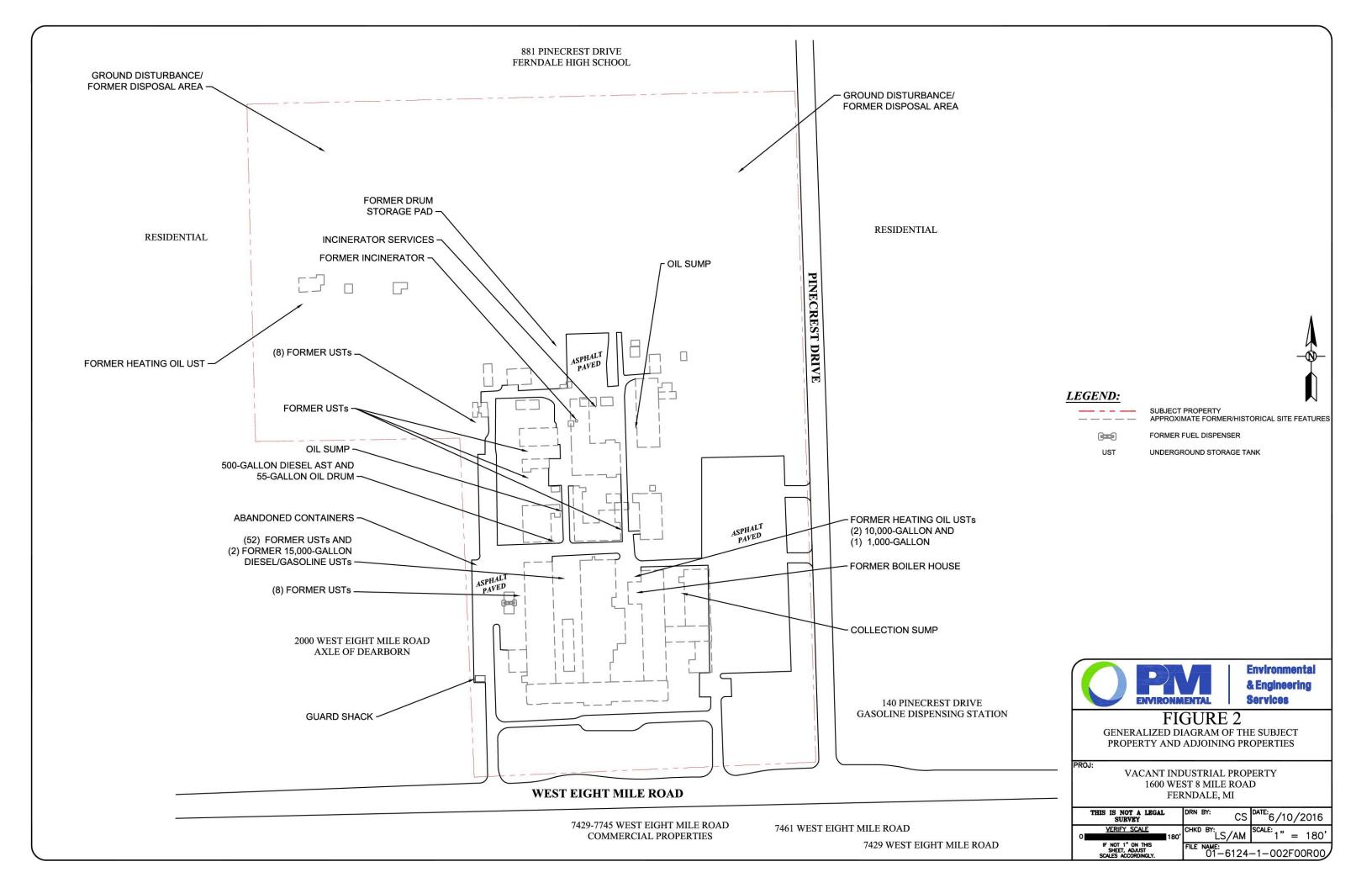

- Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process, ASTM, ASTM Designation E 1527-13, Published November 2013.
- United States Geological Survey Division (U.S.G.S.) 7.5 Minute Topographic Map Royal Oak, Michigan Quadrangle, 1996.

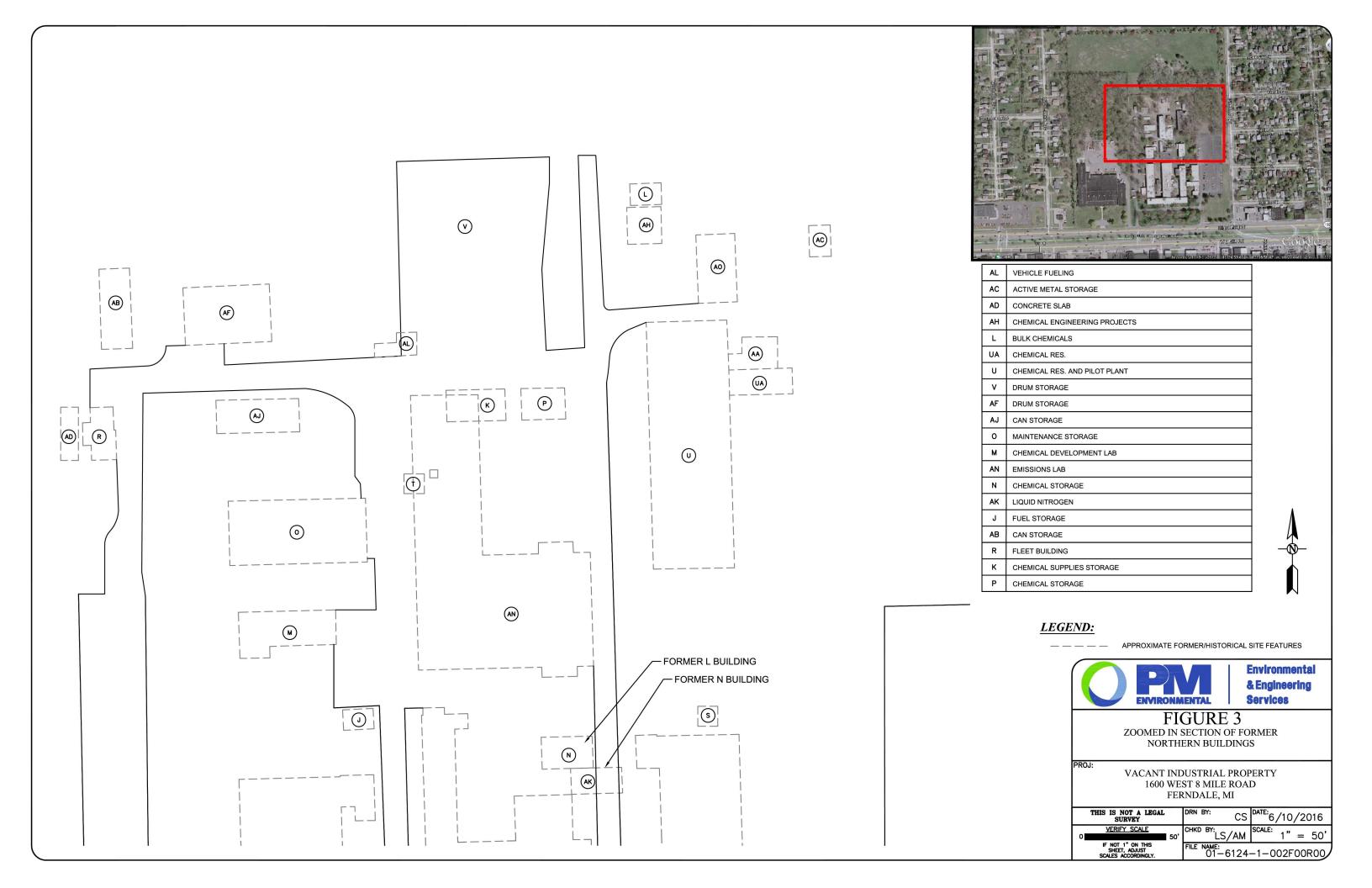
In addition, PM reviewed the following previous site investigations, some of which are available from public sources.

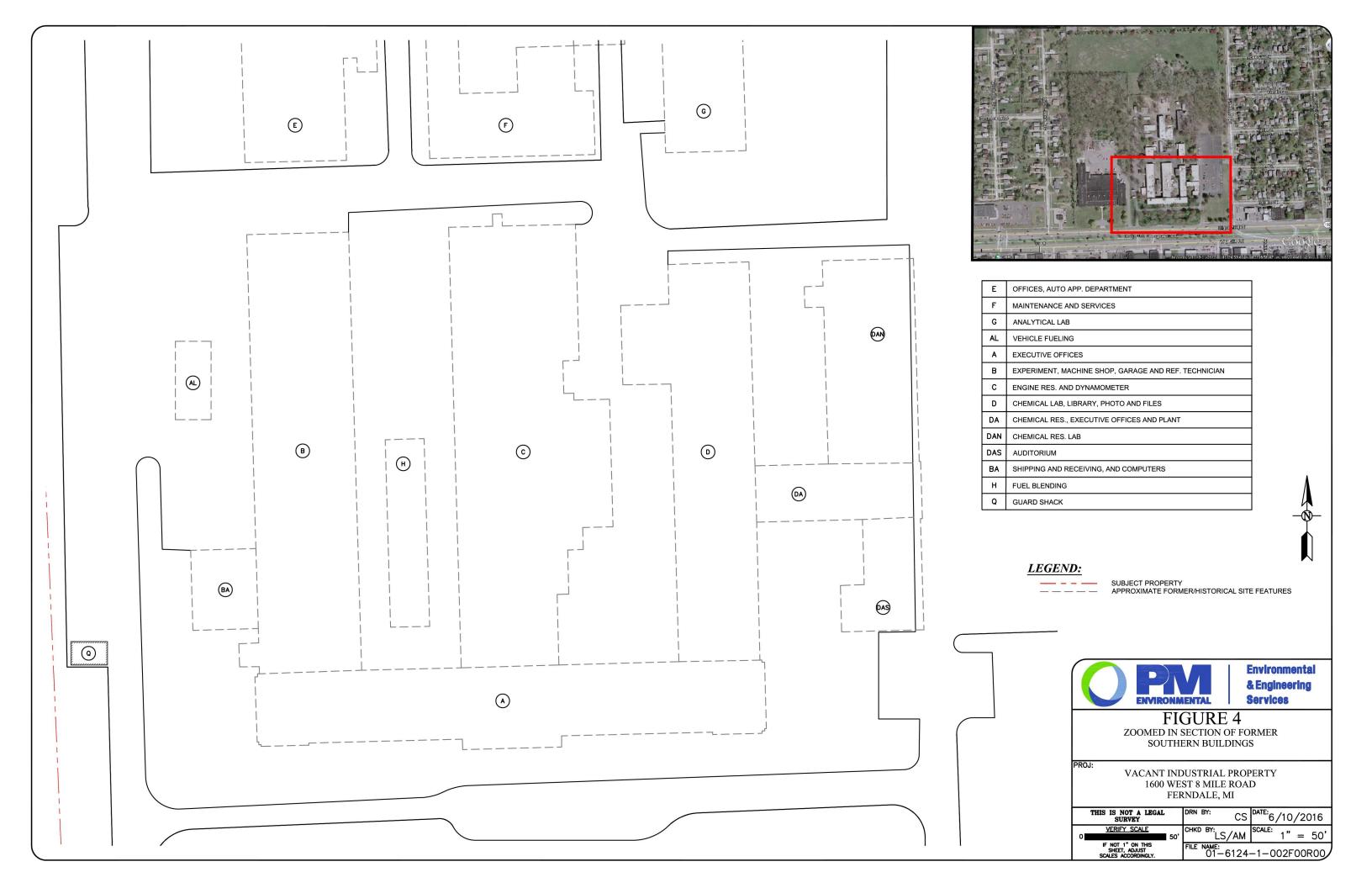
Name of Report	Date of Report	Company that Prepared Report
Health Department Correspondence (Magnetometer Survey)	1985-1986	Between Ethyl Corporation and Oakland County Health Division
Leaking Underground Storage Tank (LUST) Closure Report	4-3-1997	Swanson Environmental
Phase I ESA	11-27-2012	RJN Environmental
Baseline Environmental Assessment (BEA)	12-2-2012	RJN Environmental
Phase II ESA	12-18-2012	RJN Environmental
Phase II ESA	11-1-2013	RJN Environmental
Phase I ESA	11-3-2015	PM

Figures

OAKLAND COUNTY


FIGURE 1


PROPERTY VICINITY MAP USGS, 7.5 MINUTE SERIES ROYAL OAK, MI QUADRANGLE, 1996.



Environmental & Engineering Services PROJ: VACANT INDUSTRIAL PROPERTY 1600 WEST 8 MILE ROAD FERNDALE, MI

THIS IS NOT A LEGAL SURVEY	DRN BY: CS	DATE: 6/10/2016
VERIFY SCALE 2,000'	CHKD BY: LS/AM	SCALE: " = 2.000'
IF NOT 1" ON THIS SHEET, ADJUST SCALES ACCORDINGLY.	FILE NAME: 01-6124-1-002F01R00	

Appendix A

Photograph 1

Subject property

Photograph 2

Subject property

Photograph 3

Subject property

Photograph 4

Subject property

Photograph 5

Subject property

Photograph 6

Subject property

Photograph 7

Guard house

Photograph 8

Guard house

Photograph 9

Mobile trailer

Photograph 10

Abandoned containers and drums in the southwestern portion of the property

Photograph 11

The north adjoining high school

Photograph 12

The east adjoining gasoline dispensing station

Photograph 13

The south adjoining properties

Photograph 14

The west adjoining light industrial property